Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vasileiadis, Thomas

  • Google
  • 7
  • 29
  • 158

Adam Mickiewicz University in Poznań

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2023Understanding the Photothermal and Photocatalytic Mechanism of Polydopamine Coated Gold Nanorods48citations
  • 2023Understanding the Photothermal and Photocatalytic Mechanism of Polydopamine Coated Gold Nanorods48citations
  • 2022Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocomposites14citations
  • 2022Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocomposites14citations
  • 2020Frequency-domain study of nonthermal gigahertz phonons reveals Fano coupling to charge carriers12citations
  • 2019Ultrafast Energy Flow and Structural Changes in Nanoscale Heterostructurescitations
  • 2018Ultrafast Heat Flow in Heterostructures of Au Nanoclusters on Thin Films Atomic Disorder Induced by Hot Electrons22citations

Places of action

Chart of shared publication
Bechelany, Mikhael
2 / 109 shared
Pazos, Raquel
2 / 2 shared
Aguilar-Ferrer, Daniel
1 / 1 shared
Żebrowska, Klaudia
2 / 3 shared
Coy, Emerson
1 / 23 shared
Ivashchenko, Olena
2 / 15 shared
Iatsunskyi, Igor
2 / 59 shared
Moya, Sergio
2 / 6 shared
Ziółek, Marcin
2 / 6 shared
Grześkowiak, Bartosz
2 / 5 shared
Błaszkiewicz, Paulina
2 / 2 shared
Emerson Coy, Phd, Dsc.
1 / 38 shared
Aguilarferrer, Daniel
1 / 1 shared
Fytas, George
3 / 19 shared
Wang, Yuchen
1 / 1 shared
Noual, Adnane
2 / 5 shared
Djafari-Rouhani, Bahram
2 / 18 shared
Yang, Shu
1 / 5 shared
Graczykowski, Bartlomiej
3 / 12 shared
Zhang, Heng
1 / 15 shared
Wang, Hai
1 / 5 shared
Bonn, Mischa
1 / 15 shared
Da Silva, Alessandra
1 / 2 shared
Waldecker, Lutz
1 / 4 shared
Bertoni, Roman
1 / 6 shared
Zahn, Daniela
1 / 3 shared
Foster, Dawn
1 / 1 shared
Palmer, Richard E.
1 / 12 shared
Ernstorfer, Ralph
1 / 11 shared
Chart of publication period
2023
2022
2020
2019
2018

Co-Authors (by relevance)

  • Bechelany, Mikhael
  • Pazos, Raquel
  • Aguilar-Ferrer, Daniel
  • Żebrowska, Klaudia
  • Coy, Emerson
  • Ivashchenko, Olena
  • Iatsunskyi, Igor
  • Moya, Sergio
  • Ziółek, Marcin
  • Grześkowiak, Bartosz
  • Błaszkiewicz, Paulina
  • Emerson Coy, Phd, Dsc.
  • Aguilarferrer, Daniel
  • Fytas, George
  • Wang, Yuchen
  • Noual, Adnane
  • Djafari-Rouhani, Bahram
  • Yang, Shu
  • Graczykowski, Bartlomiej
  • Zhang, Heng
  • Wang, Hai
  • Bonn, Mischa
  • Da Silva, Alessandra
  • Waldecker, Lutz
  • Bertoni, Roman
  • Zahn, Daniela
  • Foster, Dawn
  • Palmer, Richard E.
  • Ernstorfer, Ralph
OrganizationsLocationPeople

article

Understanding the Photothermal and Photocatalytic Mechanism of Polydopamine Coated Gold Nanorods

  • Bechelany, Mikhael
  • Pazos, Raquel
  • Emerson Coy, Phd, Dsc.
  • Aguilarferrer, Daniel
  • Żebrowska, Klaudia
  • Ivashchenko, Olena
  • Iatsunskyi, Igor
  • Moya, Sergio
  • Vasileiadis, Thomas
  • Ziółek, Marcin
  • Grześkowiak, Bartosz
  • Błaszkiewicz, Paulina
Abstract

<jats:title>Abstract</jats:title><jats:p>Localized surface plasmon resonance (LSPRs) shown by gold nanorods (AuNRs) has several applications in photocatalysis, sensing, and biomedicine. The combination of AuNRs with Polydopamine (PDA) shells results in a strong photo‐thermal effect, making them appealing nanomaterials for biomedical applications. However, the precise roles and relative contributions of plasmonic effects in gold, and light‐to‐heat conversion in PDA are still debated. Herein, a hybrid nanoplatform made by an AuNR core surrounded by a polydopamine (PDA) shell is synthesized, and its photocatalytic behavior is studied. Synthesis is based on a seed‐mediated growth followed by the further self‐polymerization of dopamine hydrochloride (DA) on the surface of the AuNRs, and the effect of the thickness of the PDA shell on the plasmon response of the composite is the main examined parameter. Photocatalytic performance is tested toward Rhodamine 6G (Rh6G), with the nanocomposites achieving better performance than bare AuNRs and bare PDA nanoparticles. The degradation of 54% of Rh6G initial concentration is achieved within 60 min of irradiation with a catalyst concentration of 7.4 µg mL<jats:sup>−1</jats:sup>. Photodegradation kinetics, time‐resolved spectroscopy, and finite‐element‐method simulations of plasmons show that AuNRs plasmons, coupled with the low thermal conductivity of PDA, provide slow thermalization, while enhancing the charge carrier transfer.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • surface
  • simulation
  • gold
  • thermal conductivity