People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Salvage, Jonathan P.
University of Brighton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Food-Inspired, High-Sensitivity Piezoresistive Graphene Hydrogelscitations
- 2023Smart Skins Based on Assembled Piezoresistive Networks of Sustainable Graphene Microcapsules for High Precision Health Diagnosticscitations
- 2022Nanosheet-Stabilized Emulsionscitations
- 2022Explosive percolation yields highly-conductive polymer nanocompositescitations
- 2021Role of release modifiers to modulate drug release from fused deposition modelling (FDM) 3D printed tabletscitations
- 2020Nanosheet-stabilized emulsions
- 2020Ultrasensitive Strain Gauges Enabled by Graphene-Stabilized Silicone Emulsionscitations
- 2018Carbon Nanofoam Supercapacitor Electrodes with Enhanced Performance Using a Water-Transfer Processcitations
- 2018Percolating metallic structures templated on laser-deposited carbon nanofoams derived from graphene oxide: applications in humidity sensingcitations
- 2012Microstructure changes of polyurethane by inclusion of chemically modified carbon nanotubes at low filler contentscitations
- 2012Synthesis and characterization of soybean-based hydrogels with an intrinsic activity on cell differentiation
Places of action
Organizations | Location | People |
---|
article
Smart Skins Based on Assembled Piezoresistive Networks of Sustainable Graphene Microcapsules for High Precision Health Diagnostics
Abstract
The environmental impact of plastic waste has had a profound effect on our livelihoods and there is a need for future plastic‐based epidermal electronics to trend toward more sustainable approaches. Infusing graphene into the culinary process of seaweed spherification produces core‐shell, food‐based nanocomposites with properties exhibiting a remarkably high degree of tunability. Unusually, mechanical, electrical, and electromechanical metrics all became decoupled from one another, allowing for each to be individually tuned. This leads to the formation of a general electromechanical model which presents a universal electronic blueprint for enhanced performances. Through this model, performance optimization and system miniaturization are enabled, with gauge factors (G) >108 for capsule diameters (D) ≈290 µm and produced at a record rate of >100 samples per second. When coalesced into quasi‐2D planar networks, microcapsules form the basis of discrete, recyclable electronic smart skins with areal independent sensitives for muscular, breathing, pulse, and blood pressure measurements in real‐time.