Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Salagre, Elena

  • Google
  • 2
  • 28
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Bismuthene - Tetrahedral DNA nanobioconjugate for virus detectioncitations
  • 2023A Guideline to Mitigate Interfacial Degradation Processes in Solid‐State Batteries Caused by Cross Diffusion5citations

Places of action

Chart of shared publication
Lorenzo, Encarnación
1 / 3 shared
Gutiérrez-Gálvez, Laura
1 / 3 shared
García-Mendiola, Tania
1 / 3 shared
García-Martín, Adrián
1 / 1 shared
Luna, Mónica
1 / 3 shared
García-Fernández, Daniel
1 / 1 shared
López-Diego, David
1 / 1 shared
Michel, Enrique G.
2 / 4 shared
Zamora, Félix
1 / 5 shared
Enebral-Romero, Estefanía
1 / 1 shared
Torres, Íñigo
1 / 1 shared
Sadeqimoqadam, Mohsen
1 / 1 shared
Siegel, Donald
1 / 1 shared
Rettenwander, Daniel
1 / 10 shared
Fleig, Jürgen
1 / 6 shared
Kothleitner, Gerald
1 / 35 shared
Smith, Jeffrey G.
1 / 2 shared
Dugulan, Iulian
1 / 1 shared
Lode, Stefanie
1 / 2 shared
Knez, Daniel
1 / 48 shared
Redhammer, Günther J.
1 / 9 shared
Ladenstein, Lukas
1 / 2 shared
Ganschow, Steffen
1 / 10 shared
Kubicek, Markus
1 / 7 shared
Din, Mir Mehraj Ud
1 / 1 shared
Limbeck, Andreas
1 / 5 shared
Ring, Joseph
1 / 1 shared
Smetaczek, Stefan
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Lorenzo, Encarnación
  • Gutiérrez-Gálvez, Laura
  • García-Mendiola, Tania
  • García-Martín, Adrián
  • Luna, Mónica
  • García-Fernández, Daniel
  • López-Diego, David
  • Michel, Enrique G.
  • Zamora, Félix
  • Enebral-Romero, Estefanía
  • Torres, Íñigo
  • Sadeqimoqadam, Mohsen
  • Siegel, Donald
  • Rettenwander, Daniel
  • Fleig, Jürgen
  • Kothleitner, Gerald
  • Smith, Jeffrey G.
  • Dugulan, Iulian
  • Lode, Stefanie
  • Knez, Daniel
  • Redhammer, Günther J.
  • Ladenstein, Lukas
  • Ganschow, Steffen
  • Kubicek, Markus
  • Din, Mir Mehraj Ud
  • Limbeck, Andreas
  • Ring, Joseph
  • Smetaczek, Stefan
OrganizationsLocationPeople

article

A Guideline to Mitigate Interfacial Degradation Processes in Solid‐State Batteries Caused by Cross Diffusion

  • Sadeqimoqadam, Mohsen
  • Michel, Enrique G.
  • Siegel, Donald
  • Rettenwander, Daniel
  • Fleig, Jürgen
  • Kothleitner, Gerald
  • Smith, Jeffrey G.
  • Dugulan, Iulian
  • Lode, Stefanie
  • Knez, Daniel
  • Salagre, Elena
  • Redhammer, Günther J.
  • Ladenstein, Lukas
  • Ganschow, Steffen
  • Kubicek, Markus
  • Din, Mir Mehraj Ud
  • Limbeck, Andreas
  • Ring, Joseph
  • Smetaczek, Stefan
Abstract

<jats:title>Abstract</jats:title><jats:p>Diffusion of transition metals across the cathode–electrolyte interface is identified as a key challenge for the practical realization of solid‐state batteries. This is related to the formation of highly resistive interphases impeding the charge transport across the materials. Herein, the hypothesis that formation of interphases is associated with the incorporation of Co into the Li<jats:sub>7</jats:sub>La<jats:sub>3</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>12</jats:sub> lattice representing the starting point of a cascade of degradation processes is investigated. It is shown that Co incorporates into the garnet structure preferably four‐fold coordinated as Co<jats:sup>2+</jats:sup> or Co<jats:sup>3+</jats:sup> depending on oxygen fugacity. The solubility limit of Co is determined to be around 0.16 per formula unit, whereby concentrations beyond this limit causes a cubic‐to‐tetragonal phase transition. Moreover, the temperature‐dependent Co diffusion coefficient is determined, for example, <jats:italic>D</jats:italic><jats:sub>700 °C</jats:sub> = 9.46 × 10<jats:sup>−14</jats:sup> cm<jats:sup>2</jats:sup> s<jats:sup>−1</jats:sup> and an activation energy <jats:italic>E</jats:italic><jats:sub>a</jats:sub> = 1.65 eV, suggesting that detrimental cross diffusion will take place at any relevant process condition. Additionally, the optimal protective Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> coating thickness for relevant temperatures is studied, which allows to create a process diagram to mitigate any degradation with a minimum compromise on electrochemical performance. This study provides a tool to optimize processing conditions toward developing high energy density solid‐state batteries.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • energy density
  • phase
  • Oxygen
  • phase transition
  • activation
  • interfacial