Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kabir, Fahmid

  • Google
  • 1
  • 5
  • 32

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Quantum Junction Solar Cells: Development and Prospects32citations

Places of action

Chart of shared publication
Alkahtani, Abdullah A.
1 / 3 shared
Iqbal, Muhammad Zahir
1 / 1 shared
Aftab, Sikandar
1 / 3 shared
Hussain, Sajjad
1 / 9 shared
Hegazy, Hosameldin Helmy
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Alkahtani, Abdullah A.
  • Iqbal, Muhammad Zahir
  • Aftab, Sikandar
  • Hussain, Sajjad
  • Hegazy, Hosameldin Helmy
OrganizationsLocationPeople

article

Quantum Junction Solar Cells: Development and Prospects

  • Alkahtani, Abdullah A.
  • Iqbal, Muhammad Zahir
  • Aftab, Sikandar
  • Kabir, Fahmid
  • Hussain, Sajjad
  • Hegazy, Hosameldin Helmy
Abstract

<jats:title>Abstract</jats:title><jats:p>Nanocrystals, called semiconductor quantum dots (QDs), contain excitons that are three‐dimensionally bound. QDs exhibit a discontinuous electronic energy level structure that is similar to that of atoms and exhibit a distinct quantum confinement effect. As a result, QDs have unique electrical, optical, and physical characteristics that can be used in a variety of optoelectronic device applications, including solar cells. In this review article, the stable and controllable synthesis of QD materials is outlined for upscaling solar cells, including material development and device performance enhancement. It includes a systematic variety of device structures for the fabrication of solar cells, such as QD, hybrid QD/organic, hybrid QD/inorganic, perovskite QD, and hybrid 2D MXene QD/perovskite. The mechanisms for the improvement of stability by QD treatment are examined. For example, the 2D MXene QD and/or Cu<jats:sub>1.8</jats:sub>S nanocrystal doping significantly increases the long‐term light and ambient stability of perovskite solar cells, resulting from improved perovskite crystallization, reduced hole transport layer (HTL) aggregation and crystallization of films, and reduced UV‐induced photocatalytic activity of the electron transport layer (ETL). For the advancement of QD solar cells and their interaction with various materials, the conclusions from this review are crucial. Finally, future prospects for the development of QD solar cells as well as current challenges are discussed.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • semiconductor
  • crystallization
  • quantum dot