People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Boltynjuk, Evgeniy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Refractory High‐Entropy Alloys Produced from Elemental Powders by Severe Plastic Deformation
- 2024Glass/crystal ZrCu/Fe nanolaminates with tunable mechanical and electrical properties
- 2024Enhanced diffusion in thin-film Cu-Zr nanoglasses
- 2024Enhanced diffusion in thin-film Cu-Zr nanoglasses
- 2024Mechanical and Electrical Properties of Nanostructured Thin Film Metallic Glasses for Flexible Electronic Applications
- 2024Precipitate-mediated enhancement of mechanical and electrical properties in HPTE-processed Al–Mg–Si alloy
- 2023Evidence for Glass–glass Interfaces in a Columnar Cu–Zr Nanoglasscitations
- 2022Synthesis and Characterization of High‐Entropy CrMoNbTaVW Thin Films Using High‐Throughput Methodscitations
- 2021Unveiling the Local Atomic Arrangements in the Shear Band Regions of Metallic Glasscitations
- 2021Phase Formation and the Electrical Properties of YSZ/rGO Composite Ceramics Sintered Using Silicon Carbide Powder Bedcitations
- 2019Effect of high-pressure torsion on the mechanical behavior of a Zr-based BMGcitations
- 2019SEM and AFM analysis of the shear bands in Zr-based BMG after HPTcitations
Places of action
Organizations | Location | People |
---|
article
Evidence for Glass–glass Interfaces in a Columnar Cu–Zr Nanoglass
Abstract
<jats:title>Abstract</jats:title><jats:p>Comprehensive analyses of the atomic structure using advanced analytical transmission electron microscopy‐based methods combined with atom probe tomography confirm the presence of distinct glass–glass interfaces in a columnar Cu‐Zr nanoglass synthesized by magnetron sputtering. These analyses provide first‐time in‐depth characterization of sputtered film nanoglasses and indicate that glass–glass interfaces indeed present an amorphous phase with reduced mass density as compared to the neighboring amorphous regions. Moreover, dedicated analyses of the diffusion kinetics by time‐of‐flight secondary ion mass spectroscopy (ToF SIMS) prove significantly enhanced diffusivity, suggesting fast transport along the low density glass–glass interfaces. The present results further indicate that sputter deposition is a feasible technique for reliable production of nanoglasses and that some of the concepts proposed for this new class of glassy materials are applicable.</jats:p>