People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Savaniu, Cristian Daniel
University of St Andrews
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023The exsolution of Cu particles from doped barium cerate zirconate via barium cuprate intermediate phasescitations
- 2021Aqueous thick-film ceramic processing of planar solid oxide fuel cells using La0.20Sr0.25Ca0.45TiO3 anode supports
- 2021Use of interplay between A-site non-stoichiometry and hydroxide doping to deliver novel proton-conducting perovskite oxidescitations
- 2021Aqueous thick-film ceramic processing of planar solid oxide fuel cells using La 0.20 Sr 0.25 C a0.45 TiO 3 anode supports
- 2020High oxide ion and proton conductivity in a disordered hexagonal perovskitecitations
- 2015Anodescitations
- 2015Utilisation of coal in direct carbon fuel cellscitations
- 2013Preparation via a solution method of La 0.2 Sr 0.25 Ca 0.45 TiO 3 and its characterization for anode supported solid oxide fuel cellscitations
- 2013Preparation via a solution method of La0.2Sr0.25Ca0.45TiO3 and its characterization for anode supported solid oxide fuel cellscitations
- 2011La-doped SrTiO3 as anode material for IT-SOFCcitations
- 2010Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation
- 2009Reduction studies and evaluation of surface modified A-site deficient La-doped SrTiO3 as anode material for IT-SOFCscitations
- 2009Intermediate temperature SOFC anode component based on A-site deficient La-doped SrTiO3citations
- 2006Disruption of extended defects in solid oxide fuel cell anodes for methane oxidationcitations
- 2006Disruption of extended defects in solid oxide fuel cell anodes for methane oxidationcitations
Places of action
Organizations | Location | People |
---|
article
The exsolution of Cu particles from doped barium cerate zirconate via barium cuprate intermediate phases
Abstract
Funding: This research was supported by EPSRC research grants EP/R023522/1, EP/T019298/1, EP/R023751/1, EP/L017008/1 the China Scholarship Commission (MW) received financial support from the UK Catalysis Hub funded by EPSRC Grant reference EP/R027129/1. ; As a low-cost alternative to noble metals, Cu plays an important role in industrial catalysis, such as water-gas shift reaction, methanol or ethanol oxidation, hydrogenation of oils, CO oxidation, among many others. An important step in optimizing Cu catalyst performance is control of nanoparticles size, distribution, and the interface with the support. While proton conducting perovskites can enhance the metal catalytic activity when acting as the support, there has been limited investigation of in situ growth of Cu metal nanoparticles from the proton conductors and its catalytic performance. Here, Cu nanoparticles are tracked exsolved from an A-site-deficient proton-conducting barium cerate-zirconate using scanning electron microscopy, revealing a continuous phase change during exsolution as a function of reduction temperature. Combined with the phase diagram and cell parameter change during reduction, a new exsolution mechanism is proposed for the first time which provides insight into tailoring metal particles interfaces at proton conducting oxide surfaces. Furthermore, the catalytic behavior in the CO oxidation reaction is explored and, it is observed that these new nanostructures can rival state of the art catalysts over long term operation. ; Peer reviewed