Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Liapis, Andreas

  • Google
  • 1
  • 12
  • 13

Aalto University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Deterministic Polymorphic Engineering of MoTe2 for Photonic and Optoelectronic Applications13citations

Places of action

Chart of shared publication
Sun, Zhipei
1 / 6 shared
Rodríguez-Fernández, Carlos
1 / 2 shared
Fernandez, Henry A.
1 / 2 shared
Lipsanen, Harri
1 / 65 shared
Cui, Xiaoqi
1 / 3 shared
Uddin, Md Gius
1 / 3 shared
Yao, Lide
1 / 9 shared
Zhang, Yi
1 / 17 shared
Mehmood, Naveed
1 / 3 shared
Ahmed, Faisal
1 / 4 shared
Caglayan, Humeyra
1 / 19 shared
Shafi, Abde Mayeen
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Sun, Zhipei
  • Rodríguez-Fernández, Carlos
  • Fernandez, Henry A.
  • Lipsanen, Harri
  • Cui, Xiaoqi
  • Uddin, Md Gius
  • Yao, Lide
  • Zhang, Yi
  • Mehmood, Naveed
  • Ahmed, Faisal
  • Caglayan, Humeyra
  • Shafi, Abde Mayeen
OrganizationsLocationPeople

article

Deterministic Polymorphic Engineering of MoTe2 for Photonic and Optoelectronic Applications

  • Sun, Zhipei
  • Rodríguez-Fernández, Carlos
  • Fernandez, Henry A.
  • Lipsanen, Harri
  • Cui, Xiaoqi
  • Uddin, Md Gius
  • Liapis, Andreas
  • Yao, Lide
  • Zhang, Yi
  • Mehmood, Naveed
  • Ahmed, Faisal
  • Caglayan, Humeyra
  • Shafi, Abde Mayeen
Abstract

<p>Developing selective and coherent polymorphic crystals at the nanoscale offers a novel strategy for designing integrated architectures for photonic and optoelectronic applications such as metasurfaces, optical gratings, photodetectors, and image sensors. Here, a direct optical writing approach is demonstrated to deterministically create polymorphic 2D materials by locally inducing metallic 1T′-MoTe<sub>2</sub> on the semiconducting 2H-MoTe<sub>2</sub> host layer. In the polymorphic-engineered MoTe<sub>2</sub>, 2H- and 1T′- crystalline phases exhibit strong optical contrast from near-infrared to telecom-band ranges (1–1.5 µm), due to the change in the band structure and increase in surface roughness. Sevenfold enhancement of third harmonic generation intensity is realized with conversion efficiency (susceptibility) of ≈1.7 × 10<sup>−7</sup> (1.1 × 10<sup>−19</sup> m<sup>2</sup> V<sup>−2</sup>) and ≈1.7 × 10<sup>−8</sup> (0.3 × 10<sup>−19</sup> m<sup>2</sup> V<sup>−2</sup>) for 1T′ and 2H-MoTe<sub>2</sub>, respectively at telecom-band ultrafast pump laser. Lastly, based on polymorphic engineering on MoTe<sub>2</sub>, a Schottky photodiode with a high photoresponsivity of 90 AW<sup>−1</sup> is demonstrated. This study proposes facile polymorphic engineered structures that will greatly benefit realizing integrated photonics and optoelectronic circuits.</p>

Topics
  • impedance spectroscopy
  • surface
  • crystalline phase
  • susceptibility
  • band structure
  • engineered structures