People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Feist, Florian
Karlsruhe Institute of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Functionally Gradient Macroporous Polymers: Emulsion Templating Offers Control over Density, Pore Morphology, and Compositioncitations
- 2023Deconstructing 3D Structured Materials by Modern Ultramicrotomy for Multimodal Imaging and Volume Analysis across Length Scalescitations
- 2023Deconstructing 3D Structured Materials by Modern Ultramicrotomy for Multimodal Imaging and Volume Analysis across Length Scales
- 2023Laser printed microelectronicscitations
- 2023Direct Visualization of Homogeneous Chemical Distribution in Functional Polyradical Microspherescitations
- 2023Characterisation of thermally treated beech and birch by means of quasi-static tests and ultrasonic wavescitations
- 2021A Comparative Study on the Temperature Effect of Solid Birch Wood and Solid Beech Wood under Impact Loadingcitations
- 2021Zerstörungsfreie Charakterisierung von Furnieren für strukturelle Verbundwerkstoffe
- 2021Predicting strength of Finnish birch veneers based on three different failure criteriacitations
- 2020Temperature related properties of solid birch wood under quasi-static and dynamic bendingcitations
- 2019GVTR: A Generic Vehicle Test Rig Representative Of The Contemporary European Vehicle Fleet
- 2019Development Of A Certification Procedure For Numerical Pedestrian Models
- 2016Coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligationcitations
- 2016Methodology for kinematic comparison of human body models for pedestrian simulations
Places of action
Organizations | Location | People |
---|
article
Deconstructing 3D Structured Materials by Modern Ultramicrotomy for Multimodal Imaging and Volume Analysis across Length Scales
Abstract
Based on the rapid advances in additive manufacturing, micro-patterned heterostructures of soft materials have become available that need to be characterized down to the nanoscale. Advanced function-structure relationships are designed by direct 3D structuring of the object and – in the future – fine control over material functionality in 3D will produce complex functional objects. To control their design, fabrication and final structure, morphological and spectroscopical imaging in 3D at nanometer resolution are critically required. With examples of carbon-based objects, it is demonstrated how serial ultramicrotomy, that is, cutting a large number of successive ultrathin sections, can be utilized to gain access to the interior of 3D objects. Array tomography, hierarchical imaging and correlative light and electron microscopy can bridge length scales over several orders of magnitude and provide multimodal information of the sample's inner structure. Morphology data derived from scanning electron microscopy are correlated with spectroscopy in analytical transmission electron microscopy and probe microscopy at nanometer resolution, using TEM-electron energy loss spectroscopy and infrared-scanning-near-field microscopy. The correlation of different imaging modalities and spectroscopy of carbon-based materials in 3D provides a powerful toolbox of complementary techniques for understanding emerging functions from nanoscopic structuring.