People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Polewczyk, Vincent
Groupe d’Étude de la Matière Condensée
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024Light-driven Electrodynamics and Demagnetization in Fe$_n$GeTe$_2$ (n = 3, 5) Thin Films
- 2024Patterning Magnonic Structures via Laser Induced Crystallization of Yittrium Iron Garnetcitations
- 2024Patterning Magnonic Structures via Laser Induced Crystallization of Yittrium Iron Garnetcitations
- 2024Thermal Treatment Effects on PMN-0.4PT/Fe Multiferroic Heterostructures
- 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo$_2$Al$_9$
- 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)citations
- 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo 2 Al 9 (M = Sr, Ba)citations
- 2023Artificial Aging of Thin Films of the Indium-Free Transparent Conducting Oxide SrVO 3citations
- 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)citations
- 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)citations
- 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics M Co 2 Al 9 ( M = Sr, Ba)citations
- 2023Formation and Etching of the Insulating Sr‐Rich V 5+ Phase at the Metallic SrVO 3 Surface Revealed by Operando XAS Spectroscopy Characterizationscitations
- 2023Flat band separation and resilient spin-Berry curvature in bilayer kagome metalscitations
- 2023Formation and Etching of the Insulating Sr‐Rich V<sup>5+</sup> Phase at the Metallic SrVO<sub>3</sub> Surface Revealed by Operando XAS Spectroscopy Characterizationscitations
- 2023Flat band separation and robust spin Berry curvature in bilayer kagome metalscitations
- 2023Flat band separation and robust spin Berry curvature in bilayer kagome metalscitations
- 2022Influence of orbital character on the ground state electronic properties in the van Der Waals transition metal iodides VI3 and CrI3citations
- 2022Influence of Orbital Character on the Ground State Electronic Properties in the van Der Waals Transition Metal Iodides VI3 and CrI3citations
- 2022Influence of Orbital Character on the Ground State Electronic Properties in the van Der Waals Transition Metal Iodides VI3 and CrI3citations
- 2022Influence of orbital character on the ground state electronic properties in the van Der Waals transition metal iodides VI 3 and CrI 3citations
- 2021Evidence of robust half-metallicity in strained manganite filmscitations
- 2021Evidence of robust half-metallicity in strained manganite filmscitations
- 2020An integrated ultra-high vacuum apparatus for growth and in situ characterization of complex materialscitations
- 2019Intrinsic versus shape anisotropy in micro-structured magnetostrictive thin films for magnetic surface acoustic wave sensorscitations
- 2019Intrinsic versus shape anisotropy in micro-structured magnetostrictive thin films for magnetic surface acoustic wave sensorscitations
Places of action
Organizations | Location | People |
---|
article
Formation and Etching of the Insulating Sr‐Rich V<sup>5+</sup> Phase at the Metallic SrVO<sub>3</sub> Surface Revealed by Operando XAS Spectroscopy Characterizations
Abstract
<jats:title>Abstract</jats:title><jats:p>In the search of low cost and more efficient electronic devices, here the properties of SrVO<jats:sub>3</jats:sub> transparent conductor oxide (TCO) thin film are investigated, both visible‐range optically transparent and highly conductive, it stands as a promising candidate to substitute the standard indium‐tin‐oxide (ITO) in applications. Its surface stability under water (both liquid and vapor) and other gaseous atmospheres is especially addressed. Through the use of spectroscopy characterizations, X‐ray photoemission and operando X‐ray absorption measurements, the formation of a thin Sr‐rich V<jats:sup>5+</jats:sup> layer located at the surface of the polycrystalline SrVO<jats:sub>3</jats:sub> film with aging is observed, and for the first time how it can be removed from the surface by solvating in water atmosphere. The surface recovery is associated to an etching process, here spectroscopically characterized in operando conditions, allowing to follow the stoichiometric modification under reaction. Once exposed in oxygen atmosphere, the Sr‐rich V<jats:sup>5+</jats:sup> layer forms again. The findings improve the understanding of aging effects in perovskite oxides, allowing for the development of functionalized films in which it is possible to control or to avoid an insulating surface layer. This constitutes an important step towards the large‐scale use of V‐based TCOs, with possible implementations in oxide‐based electronics.</jats:p>