People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Torelli, Piero
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Advanced Electrode Materials Based on Brownmillerite Calcium Ferrite for Li‐Ion Batteriescitations
- 2024Thermal Treatment Effects on PMN-0.4PT/Fe Multiferroic Heterostructures
- 2023Artificial Aging of Thin Films of the Indium-Free Transparent Conducting Oxide SrVO 3citations
- 2023Formation and Etching of the Insulating Sr‐Rich V 5+ Phase at the Metallic SrVO 3 Surface Revealed by Operando XAS Spectroscopy Characterizationscitations
- 2023Formation and Etching of the Insulating Sr‐Rich V<sup>5+</sup> Phase at the Metallic SrVO<sub>3</sub> Surface Revealed by Operando XAS Spectroscopy Characterizationscitations
- 2021Evidence of robust half-metallicity in strained manganite filmscitations
- 2021Evidence of robust half-metallicity in strained manganite filmscitations
- 2019Room temperature biaxial magnetic anisotropy in La0.67Sr0.33MnO3 thin films on SrTiO3 buffered MgO (001) substrates for spintronic applicationscitations
- 2017Protected surface state in stepped Fe (0 18 1)
- 2017Enhanced Magnetic Hybridization of a Spinterface through Insertion of a Two-Dimensional Magnetic Oxide Layercitations
- 2015Magnetically Hard Fe3Se4 Embedded in Bi2Se3 Topological Insulator Thin Films Grown by Molecular Beam Epitaxycitations
- 2014Observation of Distinct Bulk and Surface Chemical Environments in a Topological Insulator under Magnetic Dopingcitations
Places of action
Organizations | Location | People |
---|
article
Formation and Etching of the Insulating Sr‐Rich V<sup>5+</sup> Phase at the Metallic SrVO<sub>3</sub> Surface Revealed by Operando XAS Spectroscopy Characterizations
Abstract
<jats:title>Abstract</jats:title><jats:p>In the search of low cost and more efficient electronic devices, here the properties of SrVO<jats:sub>3</jats:sub> transparent conductor oxide (TCO) thin film are investigated, both visible‐range optically transparent and highly conductive, it stands as a promising candidate to substitute the standard indium‐tin‐oxide (ITO) in applications. Its surface stability under water (both liquid and vapor) and other gaseous atmospheres is especially addressed. Through the use of spectroscopy characterizations, X‐ray photoemission and operando X‐ray absorption measurements, the formation of a thin Sr‐rich V<jats:sup>5+</jats:sup> layer located at the surface of the polycrystalline SrVO<jats:sub>3</jats:sub> film with aging is observed, and for the first time how it can be removed from the surface by solvating in water atmosphere. The surface recovery is associated to an etching process, here spectroscopically characterized in operando conditions, allowing to follow the stoichiometric modification under reaction. Once exposed in oxygen atmosphere, the Sr‐rich V<jats:sup>5+</jats:sup> layer forms again. The findings improve the understanding of aging effects in perovskite oxides, allowing for the development of functionalized films in which it is possible to control or to avoid an insulating surface layer. This constitutes an important step towards the large‐scale use of V‐based TCOs, with possible implementations in oxide‐based electronics.</jats:p>