Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jamshaid, Afshan

  • Google
  • 1
  • 8
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Metal Halide Perovskite Surfaces with Mixed A‐Site Cations: Atomic Structure and Device Stability13citations

Places of action

Chart of shared publication
Qi, Yabing
1 / 2 shared
Son, Daeyong
1 / 1 shared
Ono, Luis K.
1 / 3 shared
Meng, Xin
1 / 1 shared
Hieulle, Jeremy
1 / 3 shared
Ohmann, Robin
1 / 9 shared
Stecker, Collin
1 / 1 shared
Liu, Zonghao
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Qi, Yabing
  • Son, Daeyong
  • Ono, Luis K.
  • Meng, Xin
  • Hieulle, Jeremy
  • Ohmann, Robin
  • Stecker, Collin
  • Liu, Zonghao
OrganizationsLocationPeople

article

Metal Halide Perovskite Surfaces with Mixed A‐Site Cations: Atomic Structure and Device Stability

  • Qi, Yabing
  • Son, Daeyong
  • Ono, Luis K.
  • Meng, Xin
  • Jamshaid, Afshan
  • Hieulle, Jeremy
  • Ohmann, Robin
  • Stecker, Collin
  • Liu, Zonghao
Abstract

<jats:title>Abstract</jats:title><jats:p>Mixing cations in the perovskite structure has been shown to improve optoelectronic device performance and stability. In particular, Cs<jats:sub>x</jats:sub>MA<jats:sub>1‐x</jats:sub>PbBr<jats:sub>3</jats:sub> (MA = CH<jats:sub>3</jats:sub>NH<jats:sub>3</jats:sub>) has been used to build high‐efficiency light‐emitting diodes. Despite those advantages, little is known about the exact location of the cations in the mixed perovskite film, and how cation distribution affects device properties and stability. By using scanning tunneling microscopy , the exact atomic structure of the mixed cation Cs<jats:sub>x</jats:sub>MA<jats:sub>1‐x</jats:sub>PbBr<jats:sub>3</jats:sub> perovskite interface is revealed. In addition, X‐ray photoelectron spectroscopy, ultraviolet photoemission spectroscopy and inverse photoemission spectroscopy are used to study the stability and electronic properties of the Cs<jats:sub>x</jats:sub>MA<jats:sub>1‐x</jats:sub>PbBr<jats:sub>3</jats:sub> perovskite film. Partial substitution of MA<jats:sup>+</jats:sup> by Cs<jats:sup>+</jats:sup> induces a modification of the perovskite surface structure, leading to improved device stability is shown. These results provide a better understanding of the key parameters involved in the stability of mixed cation perovskite solar cells.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • surface
  • photoelectron spectroscopy
  • scanning tunneling microscopy