Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Plesse, Cédric

  • Google
  • 6
  • 31
  • 113

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Electroactive Bi‐Functional Liquid Crystal Elastomer Actuators11citations
  • 20233D‐Printed Stacked Ionic Assemblies for Iontronic Touch Sensors32citations
  • 20223D‐Printed Stacked Ionic Assemblies for Iontronic Touch Sensors32citations
  • 2022Tailoring electromechanical properties of natural rubber vitrimers by cross-linkers13citations
  • 2022Photopolymerizable Ionogel with Healable Properties Based on Dioxaborolane Vitrimer Chemistry8citations
  • 2021Ionic liquid-based semi-interpenetrating polymer network (sIPN) membranes for CO2 separation17citations

Places of action

Chart of shared publication
Vancaeyzeele, Cédric
5 / 5 shared
Nguyen, Giao T. M.
3 / 11 shared
Brûlet, Annie
1 / 17 shared
Li, Min-Hui
1 / 2 shared
Deng, Yakui
1 / 1 shared
Ni, Bin
1 / 1 shared
Liu, Gaoyu
1 / 1 shared
Vidal, Frédéric
2 / 6 shared
Raquez, Jeanmarie
2 / 2 shared
Baleine, Nicolas
2 / 4 shared
Odent, Jérémy
2 / 13 shared
Dobashi, Yuta
2 / 4 shared
Madden, John D. W.
1 / 7 shared
Biard, Valentin
2 / 2 shared
Madden, John, D. W.
1 / 1 shared
Nguyen, Giao, T. M.
1 / 2 shared
Wemyss, Alan M.
1 / 7 shared
Bui, Khoa
1 / 1 shared
Vidal, Frederic
1 / 10 shared
Zhang, Runan
1 / 4 shared
Wan, Chaoying
1 / 17 shared
Li, Fengdi
1 / 1 shared
Nguyen, Giao
1 / 2 shared
Michaud, Alexandre
1 / 1 shared
Marrucho, Isabel
1 / 5 shared
Vieira, Tiago M.
1 / 1 shared
Gouveia, Andreia S. L.
1 / 1 shared
Bumenn, Edwin
1 / 1 shared
Alves, Vítor D.
1 / 11 shared
Tomé, Liliana C.
1 / 7 shared
Rohtlaid, Kätlin
1 / 4 shared
Chart of publication period
2024
2023
2022
2021

Co-Authors (by relevance)

  • Vancaeyzeele, Cédric
  • Nguyen, Giao T. M.
  • Brûlet, Annie
  • Li, Min-Hui
  • Deng, Yakui
  • Ni, Bin
  • Liu, Gaoyu
  • Vidal, Frédéric
  • Raquez, Jeanmarie
  • Baleine, Nicolas
  • Odent, Jérémy
  • Dobashi, Yuta
  • Madden, John D. W.
  • Biard, Valentin
  • Madden, John, D. W.
  • Nguyen, Giao, T. M.
  • Wemyss, Alan M.
  • Bui, Khoa
  • Vidal, Frederic
  • Zhang, Runan
  • Wan, Chaoying
  • Li, Fengdi
  • Nguyen, Giao
  • Michaud, Alexandre
  • Marrucho, Isabel
  • Vieira, Tiago M.
  • Gouveia, Andreia S. L.
  • Bumenn, Edwin
  • Alves, Vítor D.
  • Tomé, Liliana C.
  • Rohtlaid, Kätlin
OrganizationsLocationPeople

article

3D‐Printed Stacked Ionic Assemblies for Iontronic Touch Sensors

  • Vancaeyzeele, Cédric
  • Nguyen, Giao T. M.
  • Raquez, Jeanmarie
  • Baleine, Nicolas
  • Odent, Jérémy
  • Dobashi, Yuta
  • Plesse, Cédric
  • Madden, John D. W.
  • Biard, Valentin
Abstract

Sensing is the process of detecting and monitoring any physico‐chemical environmental parameters. Herein, new self‐powered iontronic sensors, which utilize touch‐induced ionic charge separation in ionically conductive hydrogels, are introduced for potential use in object mapping, recognition, and localization. This is accomplished using high‐resolution stereolithography (SLA) 3D printing of stacked ionic assemblies consisting of discrete compartments having different ion transport properties. The latter assemblies readily allow programming the output voltage magnitude and polarity by means of variations in ion type, charge density, and cross‐linking density within the iontronic device. Voltages of up to 70 mV are generated on application of compressive strains of as much as 50% (≈22.5 kPa), with the magnitude directly proportional to stress, and the polarity dependent on the sign of the mobile ion. As a proof‐of‐concept demonstration, the resulting touch sensors are integrated on the fingertip to enable the tactile feedback, mimicking the tactile perception of objects for recognition applications. In addition, it is proposed that streaming potential is the underlying mechanism behind the iontronic touch sensors. The electromechanical response is therein consistent with a streaming potential model.

Topics
  • density
  • impedance spectroscopy