People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rahimi, Ehsan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Physicochemical Changes of Apoferritin Protein during Biodegradation of Magnetic Metal Oxide Nanoparticles
- 2024Effects of grain boundary chemistry and precipitate structure on intergranular corrosion in Al-Mg-Si alloys doped with Cu and Zncitations
- 2023Challenges and Strategies for Optimizing Corrosion and Biodegradation Stability of Biomedical Micro‐ and Nanoswimmers: A Reviewcitations
- 2023Biodegradation of Oxide Nanoparticles in Apoferritin Protein Media: A Systematic Electrochemical Approachcitations
- 2022Albumin Protein Adsorption on CoCrMo Implant Alloycitations
- 2021Role of phosphate, calcium species and hydrogen peroxide on albumin protein adsorption on surface oxide of Ti6Al4V alloycitations
- 2018Correlation between the histogram and power spectral density analysis of AFM and SKPFM images in an AA7023/AA5083 FSW jointcitations
- 2017Prediction of corrosion initiation sites in dissimilar FSW AA5083/AA70232 aluminum alloys joint by quantitative multimodal-Gaussian histogram analysis of AFM-SKPFM microscopy images
- 2016The influence of iron level on corrosion of high-pressure die-cast LM24 alloy
Places of action
Organizations | Location | People |
---|
article
Challenges and Strategies for Optimizing Corrosion and Biodegradation Stability of Biomedical Micro‐ and Nanoswimmers: A Review
Abstract
<jats:title>Abstract</jats:title><jats:p>The last two decades have witnessed the emergence of micro‐ and nanoswimmers (MNSs). Researchers have invested significant efforts in engineering motile micro‐ and nanodevices to address current limitations in minimally invasive medicine. MNSs can move through complex fluid media by using chemical fuels or external energy sources such as magnetic fields, ultrasound, or light. Despite significant advancements in their locomotion and functionalities, the gradual deterioration of MNSs in human physiological media is often overlooked. Corrosion and biodegradation caused by chemical reactions with surrounding medium and the activity of biological agents can significantly affect their chemical stability and functional properties during their lifetime performance. It is therefore essential to understand the degradation mechanisms and factors that influence them to design ideal biomedical MNSs that are affordable, highly efficient, and sufficiently resistant to degradation (at least during their service time). This review summarizes recent studies that delve into the physicochemical characteristics and complex environmental factors affecting the corrosion and biodegradation of MNSs, with a focus on metal‐based devices. Additionally, different strategies are discussed to enhance and/or optimize their stability. Conversely, controlled degradation of non‐toxic MNSs can be highly advantageous for numerous biomedical applications, allowing for less invasive, safer, and more efficient treatments.</jats:p>