People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Faul, Charl F. J.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Soft alchemycitations
- 2024Soft alchemy:a comprehensive guide to chemical reactions for pneumatic soft actuationcitations
- 2024Triphenylamine-Based Conjugated Microporous Polymers as the Next Generation Organic Cathode Materials
- 2023Electric Field-Driven Dielectrophoretic Elastomer Actuatorscitations
- 2021Efficient and Controlled Seeded Growth of Poly(3-hexylthiophene) Block Copolymer Nanofibers through Suppression of Homogeneous Nucleationcitations
- 2017Uniform “Patchy” Platelets by Seeded Heteroepitaxial Growth of Crystallizable Polymer Blends in Two Dimensionscitations
- 2016Influence of solvent polarity on the structure of drop-cast electroactive tetra(aniline)-surfactant thin filmscitations
- 2016Influence of solvent polarity on the structure of drop-cast electroactive tetra(aniline)-surfactant thin filmscitations
- 2016Biomimetic photo-actuationcitations
- 2015Self-assembly of a functional oligo(aniline)-based amphiphile into helical conductive nanowirescitations
- 2015Modelling and analysis of pH responsive hydrogels for the development of biomimetic photo-actuating structurescitations
- 2009Solid state nanofibers based on self-assemblies:from cleaving from self-assemblies to multilevel hierarchical constructscitations
Places of action
Organizations | Location | People |
---|
article
Electric Field-Driven Dielectrophoretic Elastomer Actuators
Abstract
Dielectrophoresis is the electro-mechanical phenomenon where a force is generated on a dielectric material when exposed to a non-uniform electric field. It has potential to be exploited in smart materials for robotic manipulation and locomotion, but to date it has been sparsely studied in this area. Herein, a new type of dielectrophoretic actuator exploiting a novel electroactive polymer is described, termed as dielectrophoretic elastomer (DPE), which undergoes electric field-driven actuation through dielectrophoresis. Unique deflection and morphing behavior of the elastomer induced by controlling the dielectrophoretic phenomenon, such as out-of-plane deformation and independence of electric field polarity, are illustrated. The dielectric and mechanical properties of the DPE are studied to gain insight into the influence of materials composition on deformation. Actuation performance using different electrode parameters is experimentally investigated with supplementary analysis through finite element simulation, revealing the relationship between electric field inhomogeneity and deflection. The applications of DPE actuators in a range of robotic devices is demonstrated, including a pump, an adjustable optical lens, and a walking robot. This diverse range of applications illustrates the wide potential of these new soft-and-smart electric field-driven materials for use in soft robotics and soft compliant devices.