Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tulyagankhodjaev, Jakhangirkhodja A.

  • Google
  • 1
  • 16
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Multimodal Characterization of Crystal Structure and Formation in Rubrene Thin Films Reveals Erasure of Orientational Discontinuities4citations

Places of action

Chart of shared publication
Ophus, Colin
1 / 11 shared
Dönges, Sven A.
1 / 2 shared
Tan, Jenna
1 / 2 shared
Zeltmann, Steven E.
1 / 1 shared
Minor, Andrew M.
1 / 6 shared
Johnson, Holly M.
1 / 1 shared
Rand, Barry P.
1 / 8 shared
Liebmanpeláez, Alex
1 / 1 shared
Folie, Brendan D.
1 / 1 shared
Khatib, Omar
1 / 1 shared
Raybin, Jonathan G.
1 / 1 shared
Roberts, Trevor D.
1 / 3 shared
Ohldag, Hendrik
1 / 5 shared
Hamerlynck, Leo M.
1 / 1 shared
Lee, Jina
1 / 1 shared
Bustillo, Karen C.
1 / 4 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Ophus, Colin
  • Dönges, Sven A.
  • Tan, Jenna
  • Zeltmann, Steven E.
  • Minor, Andrew M.
  • Johnson, Holly M.
  • Rand, Barry P.
  • Liebmanpeláez, Alex
  • Folie, Brendan D.
  • Khatib, Omar
  • Raybin, Jonathan G.
  • Roberts, Trevor D.
  • Ohldag, Hendrik
  • Hamerlynck, Leo M.
  • Lee, Jina
  • Bustillo, Karen C.
OrganizationsLocationPeople

article

Multimodal Characterization of Crystal Structure and Formation in Rubrene Thin Films Reveals Erasure of Orientational Discontinuities

  • Ophus, Colin
  • Dönges, Sven A.
  • Tan, Jenna
  • Zeltmann, Steven E.
  • Minor, Andrew M.
  • Tulyagankhodjaev, Jakhangirkhodja A.
  • Johnson, Holly M.
  • Rand, Barry P.
  • Liebmanpeláez, Alex
  • Folie, Brendan D.
  • Khatib, Omar
  • Raybin, Jonathan G.
  • Roberts, Trevor D.
  • Ohldag, Hendrik
  • Hamerlynck, Leo M.
  • Lee, Jina
  • Bustillo, Karen C.
Abstract

<jats:title>Abstract</jats:title><jats:p>Multimodal multiscale characterization provide opportunities to study organic semiconducting thin films with multiple length scales, across multiple platforms, to elucidate crystallization mechanisms of the various microstructures that impact functionality. With polarized scanning transmission X‐ray and 4D‐scanning transmission electron microscopy, hybrid crystalline structures in rubrene thin films in which large crystalline domains surround a common nucleus and transition to a spherulite morphology at larger radii is observed. These high‐resolution techniques reveal how azimuthal orientational discontinuities at smaller radii are erased as spherulite morphology takes hold. In situ crystallization in the films with optical microscopy is also captured, discovering the importance of considering the initial temperature increase of a film during thermal annealing over the crystallization timescale. This kinetic information of the radial crystallization rate and of corresponding film heating kinetics is used to estimate the temperature at which the larger crystalline regions transition into a spherulite. By combining the results obtained from the different characterization modes, it is learned that thermal conditions can sensitively affect the crystallization of rubrene and other organic thin films. The observations suggest opportunities for more complex temperature‐dependent processing to maximize hybrid structures’ functionality in organic thin films and demonstrate that multimodal studies deepen the understanding of structure‐function dynamics.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • thin film
  • transmission electron microscopy
  • annealing
  • optical microscopy
  • crystallization