Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dai, Linjie

  • Google
  • 7
  • 62
  • 109

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Multifold Enhanced Photon Upconversion in a Composite Annihilator System Sensitized by Perovskite Nanocrystals.citations
  • 2024Direct linearly polarized electroluminescence from perovskite nanoplatelet superlattices31citations
  • 2024Enhanced Excitonic Nature of MAPbBr 3 Nanocrystals in Nanoporous GaNcitations
  • 2024Multifold Enhanced Photon Upconversion in a Composite Annihilator System Sensitized by Perovskite Nanocrystals2citations
  • 2022The effect of caesium alloying on the ultrafast structural dynamics of hybrid organic-inorganic halide perovskites11citations
  • 2021Understanding the Role of Grain Boundaries on Charge‐Carrier and Ion Transport in Cs 2 AgBiBr 6 Thin Filmscitations
  • 2021Understanding the Role of Grain Boundaries on Charge‐Carrier and Ion Transport in Cs<sub>2</sub>AgBiBr<sub>6</sub> Thin Films65citations

Places of action

Chart of shared publication
Salway, Hayden
2 / 5 shared
Stranks, Samuel D.
3 / 101 shared
Yang, Le
2 / 3 shared
Ruggeri, Edoardo
2 / 2 shared
Bi, Pengqing
2 / 2 shared
Yang, Zhihong
2 / 2 shared
Anaya, Miguel
1 / 20 shared
Chua, Xian Wei
2 / 3 shared
Ye, Junzhi
4 / 18 shared
Arul, Rakesh
2 / 3 shared
Sun, Yuqi
2 / 2 shared
Hoye, Robert L. Z.
4 / 26 shared
Greenham, Neil C.
3 / 20 shared
Bai, Xinyu
1 / 6 shared
Gundimeda, Abhiram
1 / 4 shared
Fairclough, Sm
1 / 11 shared
Griffin, Ph
1 / 1 shared
Sarkar, Maruf
1 / 1 shared
Friend, Richard H.
2 / 48 shared
Oliver, Rachel A.
3 / 30 shared
Dar, Mi
1 / 5 shared
Anaya Martín, Miguel
1 / 2 shared
Bakulin, Artem A.
1 / 12 shared
Zelewski, Szymon J.
1 / 5 shared
Baumberg, Jj
1 / 12 shared
Jansen, Tlc
1 / 2 shared
Greetham, Gregory M.
1 / 2 shared
Gallop, Np
1 / 2 shared
Kusch, Gunnar
2 / 20 shared
Huang, Yt
1 / 2 shared
Shivanna, Ravichandran
2 / 10 shared
Pradhan, Dipika
2 / 2 shared
Sirringhaus, Henning
2 / 48 shared
Zhang, Youcheng
2 / 8 shared
Senanayak, Sp
1 / 9 shared
Li, Zewei
2 / 3 shared
Huang, Yiteng
1 / 3 shared
Friend, Richard, H.
1 / 549 shared
Senanayak, Satyaprasad P.
1 / 11 shared
Greenham, Neil
1 / 3 shared
Chart of publication period
2024
2022
2021

Co-Authors (by relevance)

  • Salway, Hayden
  • Stranks, Samuel D.
  • Yang, Le
  • Ruggeri, Edoardo
  • Bi, Pengqing
  • Yang, Zhihong
  • Anaya, Miguel
  • Chua, Xian Wei
  • Ye, Junzhi
  • Arul, Rakesh
  • Sun, Yuqi
  • Hoye, Robert L. Z.
  • Greenham, Neil C.
  • Bai, Xinyu
  • Gundimeda, Abhiram
  • Fairclough, Sm
  • Griffin, Ph
  • Sarkar, Maruf
  • Friend, Richard H.
  • Oliver, Rachel A.
  • Dar, Mi
  • Anaya Martín, Miguel
  • Bakulin, Artem A.
  • Zelewski, Szymon J.
  • Baumberg, Jj
  • Jansen, Tlc
  • Greetham, Gregory M.
  • Gallop, Np
  • Kusch, Gunnar
  • Huang, Yt
  • Shivanna, Ravichandran
  • Pradhan, Dipika
  • Sirringhaus, Henning
  • Zhang, Youcheng
  • Senanayak, Sp
  • Li, Zewei
  • Huang, Yiteng
  • Friend, Richard, H.
  • Senanayak, Satyaprasad P.
  • Greenham, Neil
OrganizationsLocationPeople

article

Understanding the Role of Grain Boundaries on Charge‐Carrier and Ion Transport in Cs<sub>2</sub>AgBiBr<sub>6</sub> Thin Films

  • Kusch, Gunnar
  • Ye, Junzhi
  • Hoye, Robert L. Z.
  • Shivanna, Ravichandran
  • Huang, Yiteng
  • Friend, Richard, H.
  • Pradhan, Dipika
  • Sirringhaus, Henning
  • Senanayak, Satyaprasad P.
  • Greenham, Neil
  • Zhang, Youcheng
  • Dai, Linjie
  • Oliver, Rachel A.
  • Li, Zewei
Abstract

<jats:title>Abstract</jats:title><jats:p>Halide double perovskites have gained significant attention, owing to their composition of low‐toxicity elements, stability in air, and recent demonstrations of long charge‐carrier lifetimes that can exceed 1 µs. In particular, Cs<jats:sub>2</jats:sub>AgBiBr<jats:sub>6</jats:sub> is the subject of many investigations in photovoltaic devices. However, the efficiencies of solar cells based on this double perovskite are still far from the theoretical efficiency limit of the material. Here, the role of grain size on the optoelectronic properties of Cs<jats:sub>2</jats:sub>AgBiBr<jats:sub>6</jats:sub> thin films is investigated. It is shown through cathodoluminescence measurements that grain boundaries are the dominant nonradiative recombination sites. It also demonstrates through field‐effect transistor and temperature‐dependent transient current measurements that grain boundaries act as the main channels for ion transport. Interestingly, a positive correlation between carrier mobility and temperature is found, which resembles the hopping mechanism often seen in organic semiconductors. These findings explain the discrepancy between the long diffusion lengths &gt;1 µm found in Cs<jats:sub>2</jats:sub>AgBiBr<jats:sub>6</jats:sub> single crystals versus the limited performance achieved in their thin film counterparts. This work shows that mitigating the impact of grain boundaries will be critical for these double perovskite thin films to reach the performance achievable based on their intrinsic single‐crystal properties.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • single crystal
  • grain
  • grain size
  • mobility
  • thin film
  • semiconductor
  • toxicity