People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rogach, Andrey
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Red-Emitting CsPbI3 /ZnSe Colloidal Nanoheterostructures with Enhanced Optical Properties and Stabilitycitations
- 2024Near-infrared two-photon excited photoluminescence from Yb3+-doped CsPbClxBr3−x perovskite nanocrystals embedded into amphiphilic silica microspherescitations
- 2024Micrometer-Resolution Fluorescence and Lifetime Mappings of CsPbBr 3 Nanocrystal Films Coupled with a TiO 2 Grating
- 2023Exploring CsPbX<sub>3</sub> (X = Cl, Br, I) Perovskite Nanocrystals in Amorphous Oxide Glasses: Innovations in Fabrication and Applicationscitations
- 2021Composite Nanospheres Comprising Luminescent Carbon Dots Incorporated into a Polyhedral Oligomeric Silsesquioxane Matrixcitations
- 2021Room temperature fabrication of stable, strongly luminescent Dion–Jacobson tin bromide perovskite microcrystals achieved through use of primary alcoholscitations
- 2021Carbon Nanoparticles as Versatile Auxiliary Components of Perovskite-Based Optoelectronic Devicescitations
- 2020Tunable Mie Resonances of Tin-based Iodide Perovskite Islandlike Films with Enhanced Infrared Photoluminescencecitations
- 2020Influence of the solvent environment on luminescent centers within carbon dotscitations
- 2020Strongly Luminescent Composites Based on Carbon Dots Embedded in a Nanoporous Silicate Glasscitations
- 2020Stable Luminescent Composite Microspheres Based on Porous Silica with Embedded CsPbBr3 Perovskite Nanocrystalscitations
- 2019Synthesis and energy structure of optical transitions of the nitrogen and sulfur co-doped carbon dots
- 2019Using Polar Alcohols for the Direct Synthesis of Cesium Lead Halide Perovskite Nanorods with Anisotropic Emissioncitations
- 2018Influence of molecular fluorophores on the research field of chemically synthesized carbon dotscitations
- 2016Photo-Aligned Quantum Rod Dispersed Liquid Crystal Polymer Filmscitations
Places of action
Organizations | Location | People |
---|
article
Carbon Nanoparticles as Versatile Auxiliary Components of Perovskite-Based Optoelectronic Devices
Abstract
Metal halide perovskite-based optoelectronics has experienced an unprecedented development in the last decade, while further improvements of efficiency, stability, and economic gains of such devices require novel engineering concepts. The use of carbon nanoparticles as versatile auxiliary components of perovskite-based optoelectronic devices is one strategy that offers several advantages in this respect. In this review, first, a brief introduction is offered on metal halide perovskites and on the major performance characteristics of related optoelectronic devices. Then, the versatility and merits of different kinds of carbon nanoparticles, such as graphene quantum dots and carbon dots, are discussed. The tunability of their electronic properties is focused upon, their interactions with perovskite components are analyzed, and different strategies of their implementation in optoelectronic devices are introduced, which include solar cells, light-emitting diodes, luminescent solar concentrators, and photodetectors. It is shown how carbon nanoparticles influence charge carriers extraction and transport, promote perovskite crystallization, allow for efficient passivation, block ion migration, suppress hysteresis, enhance their environmental stability, and thus improve the performance of perovskite-based optoelectronic devices.