Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Santiago, Raul

  • Google
  • 4
  • 27
  • 70

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022X-ray Detectors With Ultrahigh Sensitivity Employing High Performance Transistors Based on a Fully Organic Small Molecule Semiconductor/Polymer Blend Active Layer19citations
  • 2022X‐ray Detectors With Ultrahigh Sensitivity Employing High Performance Transistors Based on a Fully Organic Small Molecule Semiconductor/Polymer Blend Active Layer19citations
  • 2020Enhancing Long‐Term Device Stability Using Thin Film Blends of Small Molecule Semiconductors and Insulating Polymers to Trap Surface‐Induced Polymorphs32citations
  • 2020Enhancing Long-Term Device Stability Using Thin Film Blends of Small Molecule Semiconductors and Insulating Polymers to Trap Surface-Induced Polymorphscitations

Places of action

Chart of shared publication
Branchini, Paolo
2 / 2 shared
Fratelli, Ilaria
2 / 3 shared
Fraboni, Beatrice
2 / 17 shared
Colantoni, Elisabetta
2 / 2 shared
Contillo, Adriano
2 / 2 shared
Tortora, Luca
2 / 3 shared
Mas Torrent, Marta
2 / 18 shared
Bromley, Stefan T.
4 / 5 shared
Tamayo, Adrián
2 / 6 shared
Ciavatti, Andrea
2 / 9 shared
Basiricò, Laura
2 / 4 shared
Martínez-Domingo, Carmen
1 / 1 shared
Rosa, Stefania De
2 / 3 shared
Mas-Torrent, Marta
2 / 5 shared
Martínezdomingo, Carme
1 / 1 shared
Ocal, Carmen
2 / 16 shared
Schweicher, Guillaume
2 / 17 shared
Babuji, Adara
2 / 7 shared
Ruzie, Christian
1 / 1 shared
Campos, Antonio
1 / 1 shared
Barrena, Esther
2 / 13 shared
Geerts, Yves H.
1 / 10 shared
Salzillo, Tommaso
2 / 10 shared
Jouclas, Rémy
2 / 5 shared
Campos García, Antonio
1 / 1 shared
Geerts, Yves Henry
1 / 4 shared
Ruzié, Christian
1 / 6 shared
Chart of publication period
2022
2020

Co-Authors (by relevance)

  • Branchini, Paolo
  • Fratelli, Ilaria
  • Fraboni, Beatrice
  • Colantoni, Elisabetta
  • Contillo, Adriano
  • Tortora, Luca
  • Mas Torrent, Marta
  • Bromley, Stefan T.
  • Tamayo, Adrián
  • Ciavatti, Andrea
  • Basiricò, Laura
  • Martínez-Domingo, Carmen
  • Rosa, Stefania De
  • Mas-Torrent, Marta
  • Martínezdomingo, Carme
  • Ocal, Carmen
  • Schweicher, Guillaume
  • Babuji, Adara
  • Ruzie, Christian
  • Campos, Antonio
  • Barrena, Esther
  • Geerts, Yves H.
  • Salzillo, Tommaso
  • Jouclas, Rémy
  • Campos García, Antonio
  • Geerts, Yves Henry
  • Ruzié, Christian
OrganizationsLocationPeople

article

Enhancing Long‐Term Device Stability Using Thin Film Blends of Small Molecule Semiconductors and Insulating Polymers to Trap Surface‐Induced Polymorphs

  • Ocal, Carmen
  • Mas-Torrent, Marta
  • Bromley, Stefan T.
  • Schweicher, Guillaume
  • Babuji, Adara
  • Ruzie, Christian
  • Campos, Antonio
  • Barrena, Esther
  • Geerts, Yves H.
  • Santiago, Raul
  • Salzillo, Tommaso
  • Jouclas, Rémy
Abstract

<jats:title>Abstract</jats:title><jats:p>The lack of long‐term stability in thin films of organic semiconductors can often be caused by the low structural stability of metastable phases that are frequently formed upon deposition on a substrate surface. Here, thin films of 2,7‐dioctyloxy[1]benzothieno[3,2‐<jats:italic>b</jats:italic>]benzothiophene (C<jats:sub>8</jats:sub>O‐BTBT‐OC<jats:sub>8</jats:sub>) and blends of this material with polystyrene by solution shearing are fabricated. Both types of films exhibit the metastable surface‐induced herringbone phase (SIP) in all the tested coating conditions. The blended films reveal a higher device performance with a field‐effect mobility close to 1 cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup>, a threshold voltage close to 0 V, and an on/off current ratio above 10<jats:sup>7</jats:sup>. In situ lattice phonon Raman microscopy is used to study the stability of the SIP polymorph. It is found that films based on only C<jats:sub>8</jats:sub>O‐BTBT‐OC<jats:sub>8</jats:sub> slowly evolve to the Bulk cofacial phase, significantly impacting device electrical performance. In contrast, the blended films stabilize the SIP phase, leading to devices that maintain a high performance over 1.5 years. This work demonstrates that blending small‐molecule organic semiconductors with insulating binding polymers can trap metastable polymorphs, which can lead to devices with both improved performance and long‐term stability.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • polymer
  • mobility
  • thin film
  • semiconductor
  • metastable phase
  • Raman microscopy