Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Heisig, Thomas

  • Google
  • 5
  • 29
  • 115

Forschungszentrum Jülich

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2021Functional Modifications Induced via X‐ray Nanopatterning in TiO 2 Rutile Single Crystals4citations
  • 2021Functional Modifications Induced via X‐ray Nanopatterning in TiO<sub>2</sub> Rutile Single Crystals4citations
  • 2020Antiphase Boundaries Constitute Fast Cation Diffusion Paths in SrTiO3 Memristive Devicescitations
  • 2020Antiphase Boundaries Constitute Fast Cation Diffusion Paths in SrTiO3 Memristive Devices25citations
  • 2019Topotactic Phase Transition Driving Memristive Behavior82citations

Places of action

Chart of shared publication
Alessio, Andrea
2 / 4 shared
Dittmann, Regina
5 / 40 shared
Picollo, Federico
2 / 8 shared
Martinez-Criado, Gema
2 / 3 shared
Truccato, Marco
2 / 8 shared
Bonino, Valentina
2 / 5 shared
Torsello, Daniele
2 / 15 shared
Mino, Lorenzo
2 / 6 shared
Glöß, Maria
2 / 3 shared
Kler, Joe
2 / 4 shared
De Souza, Roger A.
1 / 11 shared
Locatelli, Andrea
2 / 12 shared
Baeumer, Christoph
1 / 8 shared
Moors, Marco
2 / 10 shared
Menteş, Tevfik Onur
2 / 5 shared
Du, Hongchu
2 / 8 shared
Genuzio, Francesca
2 / 3 shared
Hensling, Felix
2 / 4 shared
Mayer, Joachim
2 / 30 shared
Souza, Roger A. De
1 / 5 shared
Bäumer, Christoph
2 / 30 shared
Zamborlini, Giovanni
1 / 9 shared
Waser, Rainer
1 / 29 shared
Jung, Chang Uk
1 / 3 shared
Schneider, Claus M.
1 / 20 shared
Jugovac, Matteo
1 / 15 shared
Feyer, Vitaliy
1 / 20 shared
Nallagatla, Venkata R.
1 / 1 shared
Kim, Miyoung
1 / 3 shared
Chart of publication period
2021
2020
2019

Co-Authors (by relevance)

  • Alessio, Andrea
  • Dittmann, Regina
  • Picollo, Federico
  • Martinez-Criado, Gema
  • Truccato, Marco
  • Bonino, Valentina
  • Torsello, Daniele
  • Mino, Lorenzo
  • Glöß, Maria
  • Kler, Joe
  • De Souza, Roger A.
  • Locatelli, Andrea
  • Baeumer, Christoph
  • Moors, Marco
  • Menteş, Tevfik Onur
  • Du, Hongchu
  • Genuzio, Francesca
  • Hensling, Felix
  • Mayer, Joachim
  • Souza, Roger A. De
  • Bäumer, Christoph
  • Zamborlini, Giovanni
  • Waser, Rainer
  • Jung, Chang Uk
  • Schneider, Claus M.
  • Jugovac, Matteo
  • Feyer, Vitaliy
  • Nallagatla, Venkata R.
  • Kim, Miyoung
OrganizationsLocationPeople

document

Antiphase Boundaries Constitute Fast Cation Diffusion Paths in SrTiO3 Memristive Devices

  • Glöß, Maria
  • Kler, Joe
  • Souza, Roger A. De
  • Locatelli, Andrea
  • Heisig, Thomas
  • Bäumer, Christoph
  • Moors, Marco
  • Menteş, Tevfik Onur
  • Dittmann, Regina
  • Du, Hongchu
  • Genuzio, Francesca
  • Hensling, Felix
  • Mayer, Joachim
Abstract

<p>Resistive switching in transition metal oxide-based metal-insulator-metal structures relies on the reversible drift of ions under an applied electric field on the nanoscale. In such structures, the formation of conductive filaments is believed to be induced by the electric-field driven migration of oxygen anions, while the cation sublattice is often considered to be inactive. This simple mechanistic picture of the switching process is incomplete as both oxygen anions and metal cations have been previously identified as mobile species under device operation. Here, spectromicroscopic techniques combined with atomistic simulations to elucidate the diffusion and drift processes that take place in the resistive switching model material SrTiO<sub>3</sub> are used. It is demonstrated that the conductive filament in epitaxial SrTiO<sub>3</sub> devices is not homogenous but exhibits a complex microstructure. Specifically, the filament consists of a conductive Ti<sup>3+</sup>-rich region and insulating Sr-rich islands. Transmission electron microscopy shows that the Sr-rich islands emerge above Ruddlesden–Popper type antiphase boundaries. The role of these extended defects is clarified by molecular static and molecular dynamic simulations, which reveal that the Ruddlesden–Popper antiphase boundaries constitute diffusion fast-paths for Sr cations in the perovskites structure.</p>

Topics
  • perovskite
  • impedance spectroscopy
  • microstructure
  • simulation
  • Oxygen
  • transmission electron microscopy
  • defect