Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Paull, Oliver

  • Google
  • 5
  • 30
  • 99

Unité Mixte de Physique CNRS/Thales

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2021An empirical approach to measuring interface energies in mixed-phase bismuth ferrite2citations
  • 2021An empirical approach to measuring interface energies in mixed-phase bismuth ferrite2citations
  • 2020Interfacial Strain Gradients Control Nanoscale Domain Morphology in Epitaxial BiFeO 3 Multiferroic Films35citations
  • 2020Interfacial Strain Gradients Control Nanoscale Domain Morphology in Epitaxial BiFeO3 Multiferroic Films35citations
  • 2019A magnetic phase diagram for nanoscale epitaxial BiFeO3 films25citations

Places of action

Chart of shared publication
Lau, Christie
2 / 2 shared
Bulanadi, Ralph
2 / 2 shared
Valanoor, Nagarajan
2 / 7 shared
Burns, Stuart R.
2 / 3 shared
Sando, Daniel
5 / 6 shared
Gregg, Marty
1 / 43 shared
Gregg, J. Marty
1 / 13 shared
Ma, Xiuliang
2 / 2 shared
Carrétéro, Cécile
2 / 9 shared
Juraszek, Jean
3 / 18 shared
Dkhil, Brahim
3 / 26 shared
Appert, Florian
3 / 5 shared
Barthélémy, Agnès
2 / 6 shared
Zhu, Yinlian
2 / 2 shared
Fischer, Johanna
2 / 7 shared
Fusil, Stéphane
2 / 12 shared
Nagarajan, Valanoor
2 / 7 shared
Govinden, Vivasha
2 / 2 shared
Bibes, Manuel
3 / 25 shared
Garcia, Vincent
3 / 14 shared
Han, Mengjiao
2 / 2 shared
Nagarajan, V.
1 / 9 shared
Breton, J. M. Le
1 / 3 shared
Barthélémy, A.
1 / 6 shared
Dupé, B.
1 / 2 shared
Cazayous, M.
1 / 5 shared
Sacuto, A.
1 / 4 shared
Carrétéro, C.
1 / 5 shared
Gallais, Y.
1 / 4 shared
Bellaiche, L.
1 / 19 shared
Chart of publication period
2021
2020
2019

Co-Authors (by relevance)

  • Lau, Christie
  • Bulanadi, Ralph
  • Valanoor, Nagarajan
  • Burns, Stuart R.
  • Sando, Daniel
  • Gregg, Marty
  • Gregg, J. Marty
  • Ma, Xiuliang
  • Carrétéro, Cécile
  • Juraszek, Jean
  • Dkhil, Brahim
  • Appert, Florian
  • Barthélémy, Agnès
  • Zhu, Yinlian
  • Fischer, Johanna
  • Fusil, Stéphane
  • Nagarajan, Valanoor
  • Govinden, Vivasha
  • Bibes, Manuel
  • Garcia, Vincent
  • Han, Mengjiao
  • Nagarajan, V.
  • Breton, J. M. Le
  • Barthélémy, A.
  • Dupé, B.
  • Cazayous, M.
  • Sacuto, A.
  • Carrétéro, C.
  • Gallais, Y.
  • Bellaiche, L.
OrganizationsLocationPeople

article

Interfacial Strain Gradients Control Nanoscale Domain Morphology in Epitaxial BiFeO 3 Multiferroic Films

  • Ma, Xiuliang
  • Carrétéro, Cécile
  • Juraszek, Jean
  • Dkhil, Brahim
  • Appert, Florian
  • Sando, Daniel
  • Barthélémy, Agnès
  • Paull, Oliver
  • Zhu, Yinlian
  • Fischer, Johanna
  • Fusil, Stéphane
  • Nagarajan, Valanoor
  • Govinden, Vivasha
  • Bibes, Manuel
  • Garcia, Vincent
  • Han, Mengjiao
Abstract

Domain switching pathways fundamentally control performance in ferroelectric thin film devices. In epitaxial bismuth ferrite (BiFeO3) films, the domain morphology is known to influence the multiferroic orders. While both striped and mosaic domains have been observed, the origins of the latter have remained unclear. Here, it is shown that domain morphology is defined by the strain profile across the film–substrate interface. In samples with mosaic domains, X-ray diffraction analysis reveals strong strain gradients, while geometric phase analysis using scanning transmission electron microscopy finds that within 5 nm of the film–substrate interface, the out-of-plane strain shows an anomalous dip while the in-plane strain is constant. Conversely, if uniform strain is maintained across the interface with zero strain gradient, striped domains are formed. Critically, an ex situ thermal treatment, which eliminates the interfacial strain gradient, converts the domains from mosaic to striped. The antiferromagnetic state of the BiFeO3 is also influenced by the domain structure, whereby the mosaic domains disrupt the long-range spin cycloid. This work demonstrates that atomic scale tuning of interfacial strain gradients is a powerful route to manipulate the global multiferroic orders in epitaxial films.

Topics
  • impedance spectroscopy
  • phase
  • x-ray diffraction
  • thin film
  • transmission electron microscopy
  • interfacial
  • Bismuth