People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Karim, Nazmul
University of the West of England
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Graphene-based high-performance pseudo-ductile glass-carbon/epoxy compositescitations
- 2023Mechanical and thermal properties of graphene nanoplatelets-reinforced recycled polycarbonate compositescitations
- 2023High performance graphene-based pseudo-ductile composites
- 2023Toward sustainable composites: graphene-modified jute fiber composites with bio-based epoxy resincitations
- 2022Mechanical and thermal properties of graphene nanoplatelets-reinforced recycled polycarbonate compositescitations
- 2022Sustainable Fiber-Reinforced Compositescitations
- 2021Enhancing the mechanical properties of natural jute yarn suitable for structural applicationscitations
- 2021Sustainable and multifunctional composites of graphene‐based natural jute fiberscitations
- 2021Investigation of the effects of fillers in polymer processingcitations
- 2020Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applicationscitations
- 2020Highly Conductive, Scalable and Machine Washable Graphene-Based E-Textiles for Multifunctional Wearable Electronic Applicationscitations
- 2019Ultrahigh performance of nanoengineered graphene-based natural jute fiber compositescitations
- 2019Ultra-high performance of nano-engineered graphene-based natural jute fiber compositescitations
- 2018High Performance Graphene-Based Natural Fibre Compositescitations
- 2018High-performance graphene-based natural fiber compositescitations
- 2016Inkjet Printing of Graphene Inks for Wearable Electronic Applications
- 2015Towards UV-curable inkjet printing of biodegradable poly (lactic acid) fabricscitations
- 2013Development of UV-Curable Inkjet Printing onto Poly (Lactic Acid) Fabrics
Places of action
Organizations | Location | People |
---|
article
Highly Conductive, Scalable and Machine Washable Graphene-Based E-Textiles for Multifunctional Wearable Electronic Applications
Abstract
Graphene-based textiles have shown promise for next generation wearable electronic applications due to its advantages over metal-based technologies. However, current reduced graphene oxide (rGO)-based e-textiles suffer from poor electrical conductivity and higher power consumption. Here highly conductive, ultra-flexible and machine washable graphene-based wearable e-textiles are reported. A simple and scalable pad-dry-cure method with subsequent roller compression and a fine encapsulation of graphene flakes is used. The graphene-based wearable e-textiles thus produced provide lowest sheet resistance (~11.9 Ω/□) ever reported on graphene e-textiles, and highly conductive even after 10 home laundry washing cycles. Moreover, it exhibits extremely high flexibility, bendability and compressibility as it shows repeatable response in both forward and backward directions before and after home laundry washing cycles. The scalability and multifunctional applications of such highly conductive graphene-based wearable e-textiles are demonstrated as ultra-flexible supercapacitor and skin mounted strain sensor.