Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Reiser, Alain

  • Google
  • 5
  • 29
  • 324

KTH Royal Institute of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Direct In- and Out-of-Plane Writing of Metals on Insulators by Electron-Beam-Enabled, Confined Electrodeposition with Submicrometer Feature Sizecitations
  • 2023Micron-scale additive manufacturing of binary and ternary alloys by electrohydrodynamic redox 3D printing8citations
  • 2020Metals by Micro‐Scale Additive Manufacturing: Comparison of Microstructure and Mechanical Properties79citations
  • 2020Metals by micro-scale additive manufacturing: comparison of microstructure and mechanical properties79citations
  • 2016Template-Free 3D Microprinting of Metals Using a Force-Controlled Nanopipette for Layer-by-Layer Electrodeposition158citations

Places of action

Chart of shared publication
Spolenak, Ralph
5 / 30 shared
Nydegger, Mirco
2 / 3 shared
Willinger, Marc Georg
1 / 5 shared
Wang, Zhu-Jun
1 / 4 shared
Hammadi, Souzan
1 / 2 shared
Porenta, Nikolaus
1 / 2 shared
Menetrey, Maxence
1 / 1 shared
Seol, Seung Kwon
2 / 2 shared
Matsuura, Toshiki
2 / 2 shared
Zambelli, Tomaso
3 / 6 shared
Utke, Ivo
2 / 58 shared
Kotler, Zvi
2 / 3 shared
Koch, Lukas
2 / 3 shared
Lee, Sanghyeon
2 / 2 shared
Poulikakos, Dimos
2 / 8 shared
Piqué, Alberto
2 / 2 shared
Rohner, Patrik
2 / 3 shared
Iwata, Futoshi
2 / 2 shared
Zhou, Nanjia
2 / 2 shared
Van Nisselroy, Cathelijn
2 / 2 shared
Wheeler, Jeffrey M.
3 / 19 shared
Fogel, Ofer
2 / 3 shared
Charipar, Kristin
2 / 2 shared
Dunn, Kathleen A.
1 / 1 shared
Vörös, János
1 / 2 shared
Dorwling-Carter, Livie
1 / 1 shared
Ihle, Stephan
1 / 1 shared
Hirt, Luca
1 / 3 shared
Pan, Zhijian
1 / 1 shared
Chart of publication period
2024
2023
2020
2016

Co-Authors (by relevance)

  • Spolenak, Ralph
  • Nydegger, Mirco
  • Willinger, Marc Georg
  • Wang, Zhu-Jun
  • Hammadi, Souzan
  • Porenta, Nikolaus
  • Menetrey, Maxence
  • Seol, Seung Kwon
  • Matsuura, Toshiki
  • Zambelli, Tomaso
  • Utke, Ivo
  • Kotler, Zvi
  • Koch, Lukas
  • Lee, Sanghyeon
  • Poulikakos, Dimos
  • Piqué, Alberto
  • Rohner, Patrik
  • Iwata, Futoshi
  • Zhou, Nanjia
  • Van Nisselroy, Cathelijn
  • Wheeler, Jeffrey M.
  • Fogel, Ofer
  • Charipar, Kristin
  • Dunn, Kathleen A.
  • Vörös, János
  • Dorwling-Carter, Livie
  • Ihle, Stephan
  • Hirt, Luca
  • Pan, Zhijian
OrganizationsLocationPeople

article

Metals by Micro‐Scale Additive Manufacturing: Comparison of Microstructure and Mechanical Properties

  • Seol, Seung Kwon
  • Matsuura, Toshiki
  • Zambelli, Tomaso
  • Utke, Ivo
  • Kotler, Zvi
  • Koch, Lukas
  • Lee, Sanghyeon
  • Poulikakos, Dimos
  • Piqué, Alberto
  • Rohner, Patrik
  • Iwata, Futoshi
  • Spolenak, Ralph
  • Zhou, Nanjia
  • Van Nisselroy, Cathelijn
  • Wheeler, Jeffrey M.
  • Reiser, Alain
  • Fogel, Ofer
  • Charipar, Kristin
Abstract

<jats:title>Abstract</jats:title><jats:p>Many emerging applications in microscale engineering rely on the fabrication of 3D architectures in inorganic materials. Small‐scale additive manufacturing (AM) aspires to provide flexible and facile access to these geometries. Yet, the synthesis of device‐grade inorganic materials is still a key challenge toward the implementation of AM in microfabrication. Here, a comprehensive overview of the microstructural and mechanical properties of metals fabricated by most state‐of‐the‐art AM methods that offer a spatial resolution ≤10 μm is presented. Standardized sets of samples are studied by cross‐sectional electron microscopy, nanoindentation, and microcompression. It is shown that current microscale AM techniques synthesize metals with a wide range of microstructures and elastic and plastic properties, including materials of dense and crystalline microstructure with excellent mechanical properties that compare well to those of thin‐film nanocrystalline materials. The large variation in materials' performance can be related to the individual microstructure, which in turn is coupled to the various physico‐chemical principles exploited by the different printing methods. The study provides practical guidelines for users of small‐scale additive methods and establishes a baseline for the future optimization of the properties of printed metallic objects—a significant step toward the potential establishment of AM techniques in microfabrication.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • polymer
  • nanoindentation
  • electron microscopy
  • additive manufacturing