People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Miola, Matteo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Nickel Boride (Ni x B) Nanocrystals:From Solid-State Synthesis to Highly Colloidally Stable Inkscitations
- 2023Nickel Boride (NixB) Nanocrystalscitations
- 2022All-dry, one-step synthesis, doping and film formation of conductive polypyrrolecitations
- 2022All-dry, one-step synthesis, doping and film formation of conductive polypyrrolecitations
- 2020Restructuring Metal–Organic Frameworks to Nanoscale Bismuth Electrocatalysts for Highly Active and Selective CO 2 Reduction to Formatecitations
- 2020Restructuring Metal–Organic Frameworks to Nanoscale Bismuth Electrocatalysts for Highly Active and Selective CO<sub>2</sub> Reduction to Formatecitations
- 2020Restructuring Metal–Organic Frameworks to Nanoscale Bismuth Electrocatalysts for Highly Active and Selective $CO_{2}$ Reduction to Formatecitations
- 2019Structural changes during water-mediated amorphization of semiconducting two-dimensional thiostannatescitations
- 2019Green Carbon-based Nanomaterials for CO2 Electroreduction
- 2019Increased Refractive Index Sensitivity by Circular Dichroism Sensing through Reduced Substrate Effectcitations
Places of action
Organizations | Location | People |
---|
article
Restructuring Metal–Organic Frameworks to Nanoscale Bismuth Electrocatalysts for Highly Active and Selective CO<sub>2</sub> Reduction to Formate
Abstract
<jats:title>Abstract</jats:title><jats:p>Recently, a large number of nanostructured metal‐containing materials have been developed for the electrochemical CO<jats:sub>2</jats:sub> reduction reaction (eCO<jats:sub>2</jats:sub>RR). However, it remains a challenge to achieve high activity and selectivity with respect to the metal load due to the limited concentration of surface metal atoms. Here, it is reported that the bismuth‐based metal–organic framework Bi(1,3,5‐tris(4‐carboxyphenyl)benzene), herein denoted Bi(btb), works as a precatalyst and undergoes a structural rearrangement at reducing potentials to form highly active and selective catalytic Bi‐based nanoparticles dispersed in a porous organic matrix. The structural change is investigated by electron microscopy, X‐ray diffraction, total scattering, and spectroscopic techniques. Due to the periodic arrangement of Bi cations in highly porous Bi(btb), the in situ formed Bi nanoparticles are well‐dispersed and hence highly exposed for surface catalytic reactions. As a result, high selectivity over a broad potential range in the eCO<jats:sub>2</jats:sub>RR toward formate production with a Faradaic efficiency up to 95(3)% is achieved. Moreover, a large current density with respect to the Bi load, i.e., a mass activity, up to 261(13) A g<jats:sup>−1</jats:sup> is achieved, thereby outperforming most other nanostructured Bi materials.</jats:p>