Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Olsson, Emilia

  • Google
  • 6
  • 23
  • 151

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2023Identifying silicides via plasmon loss satellites in photoemission of the Ru-Si system2citations
  • 2020Elucidating the Effect of Planar Graphitic Layers and Cylindrical Pores on the Storage and Diffusion of Li, Na, and K in Carbon Materials81citations
  • 2019Structural, elastic, vibrational and electronic properties of amorphous Sm2O3 from Ab Initio calculations16citations
  • 2019Modeling of Diffusion and Incorporation of Interstitial Oxygen Ions at the TiN/SiO2 Interface12citations
  • 2016A DFT+U study of the structural, electronic, magnetic, and mechanical properties of cubic and orthorhombic SmCoO320citations
  • 2016A DFT+U study of the structural, electronic, magnetic, and mechanical properties of cubic and orthorhombic SmCoO320citations

Places of action

Chart of shared publication
Troglia, A.
1 / 6 shared
Bliem, Roland
1 / 14 shared
Vliet, S. Van
1 / 3 shared
Jensen, Anders C. S.
1 / 4 shared
Titirici, Maria Magdalena
1 / 5 shared
Guo, Zhenyu
1 / 2 shared
Alptekin, Hande
1 / 2 shared
Au, Heather
1 / 4 shared
Cai, Qiong
1 / 7 shared
Cottom, Jonathon
3 / 3 shared
Drew, Alan J.
1 / 3 shared
Jakobsen, Rasmus
1 / 2 shared
Cai, Q.
1 / 8 shared
Shluger, Alexander L.
2 / 10 shared
Spitaler, Jürgen
1 / 3 shared
Bochkarev, Anton
1 / 1 shared
Popov, Mn
1 / 1 shared
Bosman, Michel
1 / 6 shared
Patel, Kamal
1 / 2 shared
Munde, Manveer
1 / 1 shared
De Leeuw, Nora
1 / 6 shared
Aparicio-Anglès, Xavier
2 / 2 shared
Leeuw, Nora H. De
1 / 11 shared
Chart of publication period
2023
2020
2019
2016

Co-Authors (by relevance)

  • Troglia, A.
  • Bliem, Roland
  • Vliet, S. Van
  • Jensen, Anders C. S.
  • Titirici, Maria Magdalena
  • Guo, Zhenyu
  • Alptekin, Hande
  • Au, Heather
  • Cai, Qiong
  • Cottom, Jonathon
  • Drew, Alan J.
  • Jakobsen, Rasmus
  • Cai, Q.
  • Shluger, Alexander L.
  • Spitaler, Jürgen
  • Bochkarev, Anton
  • Popov, Mn
  • Bosman, Michel
  • Patel, Kamal
  • Munde, Manveer
  • De Leeuw, Nora
  • Aparicio-Anglès, Xavier
  • Leeuw, Nora H. De
OrganizationsLocationPeople

article

Elucidating the Effect of Planar Graphitic Layers and Cylindrical Pores on the Storage and Diffusion of Li, Na, and K in Carbon Materials

  • Jensen, Anders C. S.
  • Titirici, Maria Magdalena
  • Olsson, Emilia
  • Guo, Zhenyu
  • Alptekin, Hande
  • Au, Heather
  • Cai, Qiong
  • Cottom, Jonathon
  • Drew, Alan J.
Abstract

<p>Hard carbons are among the most promising materials for alkali-ion metal anodes. These materials have a highly complex structure and understanding the metal storage and migration within these structures is of utmost importance for the development of next-generation battery technologies. The effect of different carbon structural motifs on Li, Na, and K storage and diffusion are probed using density functional theory based on experimental characterizations of hard carbon samples. Two carbon structural models—the planar graphitic layer model and the cylindrical pore model—are constructed guided by small-angle X-ray scattering and transmission electron microscopy characterization. The planar graphitic layers with interlayer distance &lt;6.5 Å are beneficial for metal storage, but do not have significant contribution to rapid metal diffusion. Fast diffusion is shown to take place in planar graphitic layers with interlayer distance &gt;6.5 Å, when the graphitic layer separation becomes so wide that there is negligible interaction between the two graphitic layers. The cylindrical pore model, reflecting the curved morphology, does not increase metal storage, but significantly lowers the metal migration barriers. Hence, the curved carbon morphologies are shown to have great importance for battery cycling. These findings provide an atomic-scale picture of the metal storage and diffusion in these materials.</p>

Topics
  • density
  • impedance spectroscopy
  • pore
  • morphology
  • Carbon
  • theory
  • transmission electron microscopy
  • density functional theory
  • X-ray scattering