Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Macias-Montero, Manuel

  • Google
  • 3
  • 11
  • 15

Consejo Superior de Investigaciones Científicas

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Carrier extraction from metallic perovskite oxide nanoparticles1citations
  • 2020Tuning the Bandgap Character of Quantum‐Confined Si–Sn Alloyed Nanocrystals7citations
  • 2020Role of the La/K Compositional Ratio in the Properties of Waveguides Written by Fs-Laser Induced Element Redistribution in Phosphate-Based Glasses7citations

Places of action

Chart of shared publication
Connor, Paul Alexander
1 / 16 shared
Irvine, John Thomas Sirr
1 / 169 shared
Švrček, Vladimir
2 / 4 shared
Velusamy, Tamilselvan
1 / 2 shared
Ni, Chengsheng
1 / 14 shared
Mariotti, Davide
2 / 17 shared
Mcdonald, Calum
1 / 8 shared
Maguire, Paul
1 / 22 shared
Alessi, Bruno
1 / 2 shared
Bürkle, Marius
1 / 1 shared
Lozach, Mickaël
1 / 3 shared
Chart of publication period
2021
2020

Co-Authors (by relevance)

  • Connor, Paul Alexander
  • Irvine, John Thomas Sirr
  • Švrček, Vladimir
  • Velusamy, Tamilselvan
  • Ni, Chengsheng
  • Mariotti, Davide
  • Mcdonald, Calum
  • Maguire, Paul
  • Alessi, Bruno
  • Bürkle, Marius
  • Lozach, Mickaël
OrganizationsLocationPeople

article

Tuning the Bandgap Character of Quantum‐Confined Si–Sn Alloyed Nanocrystals

  • Alessi, Bruno
  • Švrček, Vladimir
  • Macias-Montero, Manuel
  • Mariotti, Davide
  • Bürkle, Marius
  • Lozach, Mickaël
Abstract

<jats:title>Abstract</jats:title><jats:p>Nanocrystals in the regime between molecules and bulk give rise to unique electronic properties. Here, a thorough study focusing on quantum‐confined nanocrystals (NCs) is provided. At the level of density functional theory an approximate (quasi) band structure which addresses both the molecular and bulk aspects of finite‐sized NCs is calculated. In particular, how band‐like features emerge with increasing particle diameter is shown. The quasiband structure is used to discuss technological‐relevant direct bandgap NCs. It is found that ultrasmall <jats:styled-content>Sn</jats:styled-content> NCs have a direct bandgap in their at‐nanoscale‐stable α‐phase and for high enough <jats:styled-content>Sn</jats:styled-content> concentration (≈41%) alloyed <jats:styled-content>Si–Sn</jats:styled-content> NCs transition from indirect to direct bandgap semiconductors. The calculations strongly support recent experiments suggesting a direct bandgap for these systems. For a quantitative comparison many‐body <jats:italic>GW</jats:italic> + Bethe–Salpeter equation (BSE) calculations are performed. The predicted optical gaps are close to the experimental data and the calculated absorbance spectra compare well with the corresponding measurements.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • phase
  • theory
  • experiment
  • semiconductor
  • density functional theory
  • band structure