Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dawson, Jonathan

  • Google
  • 13
  • 56
  • 765

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2023Branched copolymer surfactants impart thermoreversible gelation to LAPONITE® gels †citations
  • 2023Branched copolymer surfactants impart thermoreversible gelation to LAPONITE® gelscitations
  • 2022Determination of protoplast growth properties using quantitative single-cell tracking analysis5citations
  • 2021Nanocomposite clay-based bioinks for skeletal tissue engineering12citations
  • 2020Growth‐factor free multicomponent nanocomposite hydrogels that stimulate bone formation79citations
  • 2020Bisphosphonate nanoclay edge-site interactions facilitate hydrogel self-assembly and sustained growth factor localization86citations
  • 2020Nanoclay-polyamine composite hydrogel for topical delivery of nitric oxide gas via innate gelation characteristics of laponite25citations
  • 2020Nanoclay-polyamine composite hydrogel for topical delivery of nitric oxide gas via innate gelation characteristics of laponite25citations
  • 2020Nanoclay-based 3D printed scaffolds promote vascular ingrowth ex vivo and generate bone mineral tissue in vitro and in vivocitations
  • 2019Printing bone in a gel: using nanocomposite bioink to print functionalised bone scaffolds86citations
  • 2019Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks182citations
  • 2018Clay nanoparticles for regenerative medicine and biomaterial design246citations
  • 2013A tissue engineering strategy for the treatment of avascular necrosis of the femoral head19citations

Places of action

Chart of shared publication
Mahmoudi, Najet
2 / 12 shared
Rajbanshi, Abhishek
2 / 3 shared
Janeczek, Agnieszka
2 / 2 shared
Da Silva, Marcelo Alves
2 / 3 shared
Cook, Michael Thomas
2 / 2 shared
Shaw, Allison
2 / 8 shared
Dovzhenko, Oleksandr
1 / 1 shared
Welsch, Ralf
1 / 1 shared
Palme, Klaus
1 / 1 shared
Moradi, Amir Bahram
1 / 1 shared
Yu, Qiuju
1 / 1 shared
Schaub, Patrick
1 / 1 shared
Pandey, Saurabh
1 / 1 shared
Wüst, Florian
1 / 1 shared
Glinka, Michael
4 / 5 shared
Cidonio, Gianluca
4 / 8 shared
Kim, Yang-Hee
5 / 9 shared
Deste, Matteo
1 / 1 shared
Hasan, Abshar
1 / 5 shared
Sun, Hongchen
1 / 1 shared
Mata, Alvaro
1 / 5 shared
Ramis, Jopeth
1 / 3 shared
Okesola, Babatunde O.
1 / 2 shared
Buttery, Lee
1 / 2 shared
Derkus, Burak
1 / 1 shared
Galeano, Carles C.
1 / 1 shared
Wu, Yuanhao
1 / 1 shared
Eglin, David
1 / 8 shared
Ni, Shilei
1 / 1 shared
Shi, Liyang
1 / 2 shared
Hilborn, Jons
1 / 1 shared
Yang, Xia
1 / 2 shared
Ossipov, Dmitri
1 / 2 shared
Lanham, Stuart
3 / 7 shared
Park, Kyungtae
2 / 2 shared
Hong, Jinkee
2 / 3 shared
Oreffo, Richard
1 / 2 shared
Kim, Yanghee
1 / 1 shared
Gelinsky, M.
1 / 8 shared
Ahlfeld, T.
1 / 2 shared
Kanczler, Janos
1 / 8 shared
Lode, Anja
1 / 12 shared
Cooke, M.
1 / 2 shared
Grover, Liam
1 / 5 shared
Orozco, Cesar Roberto Alcala
1 / 1 shared
Mutreja, Isha
1 / 1 shared
Lim, Khoon
1 / 1 shared
Woodfield, Tim
1 / 2 shared
Mousa, Mohamed
1 / 1 shared
Evans, Nicholas D.
1 / 5 shared
Briscoe, Adam
1 / 3 shared
Dunlop, Douglas G.
1 / 4 shared
Smith, John
1 / 1 shared
Aarvold, A.
1 / 2 shared
Jones, A. M. H.
1 / 1 shared
Tayton, Edward R.
1 / 1 shared
Chart of publication period
2023
2022
2021
2020
2019
2018
2013

Co-Authors (by relevance)

  • Mahmoudi, Najet
  • Rajbanshi, Abhishek
  • Janeczek, Agnieszka
  • Da Silva, Marcelo Alves
  • Cook, Michael Thomas
  • Shaw, Allison
  • Dovzhenko, Oleksandr
  • Welsch, Ralf
  • Palme, Klaus
  • Moradi, Amir Bahram
  • Yu, Qiuju
  • Schaub, Patrick
  • Pandey, Saurabh
  • Wüst, Florian
  • Glinka, Michael
  • Cidonio, Gianluca
  • Kim, Yang-Hee
  • Deste, Matteo
  • Hasan, Abshar
  • Sun, Hongchen
  • Mata, Alvaro
  • Ramis, Jopeth
  • Okesola, Babatunde O.
  • Buttery, Lee
  • Derkus, Burak
  • Galeano, Carles C.
  • Wu, Yuanhao
  • Eglin, David
  • Ni, Shilei
  • Shi, Liyang
  • Hilborn, Jons
  • Yang, Xia
  • Ossipov, Dmitri
  • Lanham, Stuart
  • Park, Kyungtae
  • Hong, Jinkee
  • Oreffo, Richard
  • Kim, Yanghee
  • Gelinsky, M.
  • Ahlfeld, T.
  • Kanczler, Janos
  • Lode, Anja
  • Cooke, M.
  • Grover, Liam
  • Orozco, Cesar Roberto Alcala
  • Mutreja, Isha
  • Lim, Khoon
  • Woodfield, Tim
  • Mousa, Mohamed
  • Evans, Nicholas D.
  • Briscoe, Adam
  • Dunlop, Douglas G.
  • Smith, John
  • Aarvold, A.
  • Jones, A. M. H.
  • Tayton, Edward R.
OrganizationsLocationPeople

article

Growth‐factor free multicomponent nanocomposite hydrogels that stimulate bone formation

  • Deste, Matteo
  • Dawson, Jonathan
  • Hasan, Abshar
  • Sun, Hongchen
  • Mata, Alvaro
  • Ramis, Jopeth
  • Okesola, Babatunde O.
  • Buttery, Lee
  • Derkus, Burak
  • Galeano, Carles C.
  • Wu, Yuanhao
  • Eglin, David
  • Ni, Shilei
Abstract

Synthetic osteo‐promoting materials that are able to stimulate and accelerate bone formation without the addition of exogenous cells or growth factors represent a major opportunity for an aging world population. A co‐assembling system that integrates hyaluronic acid tyramine (HA‐Tyr ), bioactive peptide amphiphiles (GHK‐Cu<sup>2+</sup>), and Laponite (Lap ) to engineer hydrogels with physical, mechanical, and biomolecular signals that can be tuned to enhance bone regeneration is reported. The central design element of the multicomponent hydrogels is the integration of self‐assembly and enzyme‐mediated oxidative coupling to optimize structure and mechanical properties in combination with the incorporation of an osteo‐ and angio‐promoting segments to facilitate signaling. Spectroscopic techniques are used to confirm the interplay of orthogonal covalent and supramolecular interactions in multicomponent hydrogel formation. Furthermore, physico‐mechanical characterizations reveal that the multicomponent hydrogels exhibit improved compressive strength, stress relaxation profile, low swelling ratio, and retarded enzymatic degradation compared to the single component hydrogels. Applicability is validated in vitro using human mesenchymal stem cells and human umbilical vein endothelial cells, and in vivo using a rabbit maxillary sinus floor reconstruction model. Animals treated with the HA‐Tyr‐HA‐Tyr‐GHK‐Cu<sup>2+</sup> hydrogels exhibit significantly enhanced bone formation relative to controls including the commercially available Bio‐Oss.

Topics
  • nanocomposite
  • impedance spectroscopy
  • strength
  • aging
  • aging