People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Blasco, Eva
Heidelberg University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Two-photon laser printing of 3D multicolor emissive polymer microstructurescitations
- 2023Deconstructing 3D Structured Materials by Modern Ultramicrotomy for Multimodal Imaging and Volume Analysis across Length Scalescitations
- 2023Deconstructing 3D Structured Materials by Modern Ultramicrotomy for Multimodal Imaging and Volume Analysis across Length Scales
- 2023Laser printed microelectronicscitations
- 2023Increasing the Efficiency of Thermoresponsive Actuation at the Microscale by Direct Laser Writing of pNIPAMcitations
- 20233D Printing Hierarchically Nano‐Ordered Structures
- 20233D Printing Hierarchically Nano‐Ordered Structurescitations
- 2023Covalent Adaptable Microstructures via Combining Two‐Photon Laser Printing and Alkoxyamine Chemistry: Toward Living 3D Microstructures
- 2022Increasing the Efficiency of Thermoresponsive Actuation at the Microscale by Direct Laser Writing of pNIPAM
- 2022Covalent Adaptable Microstructures via Combining Two‐Photon Laser Printing and Alkoxyamine Chemistry: Toward Living 3D Microstructurescitations
- 2021Enzyme-degradable 3D multi-material microstructurescitations
- 2021Emissive semi-interpenetrating polymer networks for ink-jet printed multilayer OLEDscitations
- 2021Multi-material multi-photon 3D laser micro- and nanoprinting
- 2020Rapid Assembly of Small Materials Building Blocks (Voxels) into Large Functional 3D Metamaterialscitations
- 2019Controlling the shape of 3D microstructures by temperature and lightcitations
- 2019Two in one: Light as a tool for 3D printing and erasing at the microscalecitations
- 2019Tailoring the mechanical properties of 3D microstructures using visible light post-manufacturingcitations
- 2018A subtractive photoresist platform for micro- and macroscopic 3D printed structurescitations
- 2016Fabrication of conductive 3D gold-containing microstructures via direct laser writingcitations
- 2015Designing pi-Conjugated Polymeric Nano- and Microstructures via Light Induced Chemistrycitations
- 2013Photochemical generation of light responsive surfacescitations
Places of action
Organizations | Location | People |
---|
article
A subtractive photoresist platform for micro- and macroscopic 3D printed structures
Abstract
The selective removal of structural elements plays a decisive role in 3D printing applications enabling complex geometries. To date, the fabrication of complex structures on the microscale is severely limited by multistep processes. Herein, a subtractive photoresist platform technology that is transferable from microscopic 3D printing via direct laser writing to macroscopic structures via stereolithography is reported. All resist components are readily accessible and exchangeable, offering fast adaptation of the resist's property profile. The micro‐ and macroprinted structures can be removed in a facile fashion, without affecting objects based on standard photoresists. The cleavage is analyzed by time‐lapse optical microscopy as well as via in‐depth spectroscopic assessment. The mechanical properties of the printed materials are investigated by nanoindentation. Critically, the power of the subtractive resist platform is demonstrated by constructing complex 3D objects with flying features on the microscale.