Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zohourian, Reihaneh

  • Google
  • 1
  • 3
  • 272

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Mixed‐Conducting Perovskites as Cathode Materials for Protonic Ceramic Fuel Cells: Understanding the Trends in Proton Uptake272citations

Places of action

Chart of shared publication
Merkle, Rotraut
1 / 7 shared
Maier, Joachim
1 / 9 shared
Raimondi, Giulia
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Merkle, Rotraut
  • Maier, Joachim
  • Raimondi, Giulia
OrganizationsLocationPeople

article

Mixed‐Conducting Perovskites as Cathode Materials for Protonic Ceramic Fuel Cells: Understanding the Trends in Proton Uptake

  • Merkle, Rotraut
  • Maier, Joachim
  • Zohourian, Reihaneh
  • Raimondi, Giulia
Abstract

<jats:title>Abstract</jats:title><jats:p>The proton uptake of 18 compositions in the perovskite family (Ba,Sr,La)(Fe,Co,Zn,Y)O<jats:sub>3‐</jats:sub><jats:italic><jats:sub>δ</jats:sub></jats:italic>, perovskites, which are potential cathode materials for protonic ceramic fuel cells (PCFCs), is investigated by thermogravimetry. Hydration enthalpies and entropies are derived, and the doping trends are explored. The uptake is found to be largely determined by the basicity of the oxide ions. Partial substitution of Zn on the B‐site strongly enhances proton uptake, while Co substitution has the opposite effect. The proton concentration in Ba<jats:sub>0.95</jats:sub>La<jats:sub>0.05</jats:sub>Fe<jats:sub>0.8</jats:sub>Zn<jats:sub>0.2</jats:sub>O<jats:sub>3‐</jats:sub><jats:italic><jats:sub>δ</jats:sub></jats:italic> is found to be 10% per formula unit at 250 °C, 5.5% at 400 °C, and 2.3% at 500 °C, which are the highest values reported so far for a mixed‐conducting perovskite exhibiting hole, proton, and oxygen vacancy transport. A comprehensive set of thermodynamic data for proton uptake in (Ba,Sr,La)(Fe,Co,Zn,Y)O<jats:sub>3‐</jats:sub><jats:italic><jats:sub>δ</jats:sub></jats:italic> is determined. Defect interactions between protons and holes partially delocalized from the B‐site transition metal to the adjacent oxide ions decrease the proton uptake. From these results, guidelines for the optimization of PCFC cathode materials are derived.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • Oxygen
  • thermogravimetry
  • vacancy