Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Foley, Sarah

  • Google
  • 1
  • 6
  • 91

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Copper Sulfide (Cu<i><sub>x</sub></i>S) Nanowire‐in‐Carbon Composites Formed from Direct Sulfurization of the Metal‐Organic Framework HKUST‐1 and Their Use as Li‐Ion Battery Cathodes91citations

Places of action

Chart of shared publication
Stokes, Killian
1 / 3 shared
Geaney, Hugh
1 / 10 shared
Ryan, Kevin
1 / 2 shared
Zaworotko, Michael J.
1 / 3 shared
Connolly, Sinead
1 / 1 shared
Bree, Gerard
1 / 3 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Stokes, Killian
  • Geaney, Hugh
  • Ryan, Kevin
  • Zaworotko, Michael J.
  • Connolly, Sinead
  • Bree, Gerard
OrganizationsLocationPeople

article

Copper Sulfide (Cu<i><sub>x</sub></i>S) Nanowire‐in‐Carbon Composites Formed from Direct Sulfurization of the Metal‐Organic Framework HKUST‐1 and Their Use as Li‐Ion Battery Cathodes

  • Stokes, Killian
  • Geaney, Hugh
  • Ryan, Kevin
  • Foley, Sarah
  • Zaworotko, Michael J.
  • Connolly, Sinead
  • Bree, Gerard
Abstract

<jats:title>Abstract</jats:title><jats:p>Li‐ion batteries containing cost‐effective, environmentally benign cathode materials with high specific capacities are in critical demand to deliver the energy density requirements of electric vehicles and next‐generation electronic devices. Here, the phase‐controlled synthesis of copper sulfide (Cu<jats:italic><jats:sub>x</jats:sub></jats:italic>S) composites by the temperature‐controlled sulfurization of a prototypal Cu metal‐organic framework (MOF), HKUST‐1 is reported. The tunable formation of different Cu<jats:italic><jats:sub>x</jats:sub></jats:italic>S phases within a carbon network represents a simple method for the production of effective composite cathode materials for Li‐ion batteries. A direct link between the sulfurization temperature of the MOF and the resultant Cu<jats:italic><jats:sub>x</jats:sub></jats:italic>S phase formed with more Cu‐rich phases favored at higher temperatures is further shown. The Cu<jats:italic><jats:sub>x</jats:sub></jats:italic>S/C samples are characterized through X‐ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy, and energy dispersive X‐ray spectroscopy (EDX) in addition to testing as Li‐ion cathodes. It is shown that the performance is dependent on both the Cu<jats:italic><jats:sub>x</jats:sub></jats:italic>S phase and the crystal morphology with the Cu<jats:sub>1.8</jats:sub>S/C‐500 material as a nanowire composite exhibiting the best performance, showing a specific capacity of 220 mAh g<jats:sup>−1</jats:sup> after 200 charge/discharge cycles.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • morphology
  • Carbon
  • energy density
  • phase
  • x-ray diffraction
  • composite
  • transmission electron microscopy
  • copper
  • thermogravimetry
  • Energy-dispersive X-ray spectroscopy