Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hölscher, Hendrik

  • Google
  • 2
  • 9
  • 134

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Bio-inspired Highly Scattering Networks via Polymer Phase Separation93citations
  • 2017Custom-Designed Glassy Carbon Tips for Atomic Force Microscopy41citations

Places of action

Chart of shared publication
Jacucci, Gianni
1 / 1 shared
Onelli, Olimpia D.
1 / 1 shared
Vignolini, Silvia
1 / 7 shared
Syurik, Julia
1 / 1 shared
Korvink, Jan
1 / 1 shared
Koos, Christian
1 / 4 shared
Dietrich, Philipp-Immanuel
1 / 1 shared
Sharma, Swati
1 / 8 shared
Zakhurdaeva, Anna
1 / 1 shared
Chart of publication period
2018
2017

Co-Authors (by relevance)

  • Jacucci, Gianni
  • Onelli, Olimpia D.
  • Vignolini, Silvia
  • Syurik, Julia
  • Korvink, Jan
  • Koos, Christian
  • Dietrich, Philipp-Immanuel
  • Sharma, Swati
  • Zakhurdaeva, Anna
OrganizationsLocationPeople

article

Bio-inspired Highly Scattering Networks via Polymer Phase Separation

  • Hölscher, Hendrik
  • Jacucci, Gianni
  • Onelli, Olimpia D.
  • Vignolini, Silvia
  • Syurik, Julia
Abstract

A common strategy to optimize whiteness in living organisms consists in using 3D random networks with dense and polydisperse scattering elements constituted by relatively low refractive index materials. Inspired by these natural architectures, a fast and scalable method to produce highly scattering porous polymer films via phase separation is developed. By varying the molecular weight of the polymer, the morphology of the porous films is modified, and therefore their scattering properties are tuned. The achieved transport mean free paths are in the micrometer range, improving the scattering strength of analogous low refractive index systems, e.g., standard white paper, by an order of magnitude. The produced porous films show a broadband reflectivity of ≈75% while only 4 µm thick. In addition, the films are flexible and can be readily index-matched with water (i.e., they become transparent when wet), allowing for various applications such as coatings with tunable transmittance and responsive paints.

Topics
  • porous
  • impedance spectroscopy
  • polymer
  • phase
  • strength
  • random
  • molecular weight