Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Liu, Yee Chen

  • Google
  • 1
  • 8
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Energy Landscape of Vertically Anisotropic Polymer Blend Films toward Highly Efficient Polymer Light-Emitting Diodes (PLEDs)3citations

Places of action

Chart of shared publication
Liu, Y.-C.
1 / 5 shared
Friend, Richard Henry
1 / 1 shared
Friend, Richard, H.
1 / 549 shared
Hassan, M. U.
1 / 4 shared
Yetisen, A. K.
1 / 2 shared
Hassan, Muhammad Umair
1 / 3 shared
Yetisen, Ali K.
1 / 10 shared
Butt, H.
1 / 14 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Liu, Y.-C.
  • Friend, Richard Henry
  • Friend, Richard, H.
  • Hassan, M. U.
  • Yetisen, A. K.
  • Hassan, Muhammad Umair
  • Yetisen, Ali K.
  • Butt, H.
OrganizationsLocationPeople

article

Energy Landscape of Vertically Anisotropic Polymer Blend Films toward Highly Efficient Polymer Light-Emitting Diodes (PLEDs)

  • Liu, Y.-C.
  • Liu, Yee Chen
  • Friend, Richard Henry
  • Friend, Richard, H.
  • Hassan, M. U.
  • Yetisen, A. K.
  • Hassan, Muhammad Umair
  • Yetisen, Ali K.
  • Butt, H.
Abstract

<p>A blend of two hole-dominant polymers is created and used as the light emissive layer in light-emitting diodes to achieve high luminous efficiency up to 22 cd A<sup>−1</sup>. The polymer blend F8<sub>1−</sub><sub>x</sub>SY<sub>x</sub> is based on poly(9,9-dioctylfluorene) (F8) and poly(para-phenylene vinylene) derivative superyellow (SY). The blend system exhibits a preferential vertical concentration distribution. The resulting energy landscape modifies the overall charge transport behavior of the blend emissive layer. The large difference between the highest unoccupied molecular orbital levels of F8 (5.8 eV) and SY (5.3 eV) introduces hole traps at SY sites within the F8 polymer matrix. This slows down the hole mobility and facilitates a balance between the transport behavior of both the charge carriers. The balance due to such energy landscape facilitates efficient formation of excitons within the emission zone well away from the cathode and minimizes the surface quenching effects. By bringing the light-emission zone in the middle of the F8<sub>1−</sub><sub>x</sub>SY<sub>x</sub> film, the bulk of the film is exploited for the light emission. Due to the charge trapping nature of SY molecules in F8 matrix and pushing the emission zone in the center, the radiative recombination rate also increases, resulting in excellent device performance.</p>

Topics
  • impedance spectroscopy
  • surface
  • mobility
  • anisotropic
  • quenching
  • polymer blend