People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yetisen, Ali K.
Imperial College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2018Highly Efficient Energy Transfer in Light Emissive Poly(9,9-dioctylfluorene) and Poly(p-phenylenevinylene) Blend Systemcitations
- 2018Functionalized flexible soft polymer optical fibers for laser photomedicinecitations
- 2018Flexible corner cube retroreflector array for temperature and strain sensingcitations
- 2018Energy Landscape of Vertically Anisotropic Polymer Blend Films toward Highly Efficient Polymer Light-Emitting Diodes (PLEDs)citations
- 2017Electrically Tunable Scattering from Devitrite-Liquid Crystal Hybrid Devicescitations
- 2017Phase-conjugated directional diffraction from a retroreflector array hologramcitations
- 2017Biodegradable elastic nanofibrous platforms with integrated flexible heaters for on-demand drug deliverycitations
- 2016Color-Selective 2.5D Holograms on Large-Area Flexible Substrates for Sensing and Multilevel Securitycitations
- 2016Nanotechnology in textilescitations
- 2014Enhanced reflection from inverse tapered nanocone arrayscitations
Places of action
Organizations | Location | People |
---|
article
Energy Landscape of Vertically Anisotropic Polymer Blend Films toward Highly Efficient Polymer Light-Emitting Diodes (PLEDs)
Abstract
<p>A blend of two hole-dominant polymers is created and used as the light emissive layer in light-emitting diodes to achieve high luminous efficiency up to 22 cd A<sup>−1</sup>. The polymer blend F8<sub>1−</sub><sub>x</sub>SY<sub>x</sub> is based on poly(9,9-dioctylfluorene) (F8) and poly(para-phenylene vinylene) derivative superyellow (SY). The blend system exhibits a preferential vertical concentration distribution. The resulting energy landscape modifies the overall charge transport behavior of the blend emissive layer. The large difference between the highest unoccupied molecular orbital levels of F8 (5.8 eV) and SY (5.3 eV) introduces hole traps at SY sites within the F8 polymer matrix. This slows down the hole mobility and facilitates a balance between the transport behavior of both the charge carriers. The balance due to such energy landscape facilitates efficient formation of excitons within the emission zone well away from the cathode and minimizes the surface quenching effects. By bringing the light-emission zone in the middle of the F8<sub>1−</sub><sub>x</sub>SY<sub>x</sub> film, the bulk of the film is exploited for the light emission. Due to the charge trapping nature of SY molecules in F8 matrix and pushing the emission zone in the center, the radiative recombination rate also increases, resulting in excellent device performance.</p>