People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kim, Seonha
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
The Impact of Sequential Fluorination of Pi-Conjugated Polymers on Charge Generation in All-Polymer Solar Cells
Abstract
<p>The performance of all-polymer solar cells (all-PSCs) is often limited by the poor exciton dissociation process. Here, the design of a series of polymer donors (P1–P3) with different numbers of fluorine atoms on their backbone is presented and the influence of fluorination on charge generation in all-PSCs is investigated. Sequential fluorination of the polymer backbones increases the dipole moment difference between the ground and excited states (Δµ<sub>ge</sub>) from P1 (18.40 D) to P2 (25.11 D) and to P3 (28.47 D). The large Δµ<sub>ge</sub> of P3 leads to efficient exciton dissociation with greatly suppressed charge recombination in P3-based all-PSCs. Additionally, the fluorination lowers the highest occupied molecular orbital energy level of P3 and P2, leading to higher open-circuit voltage (V<sub>OC</sub>). The power conversion efficiency of the P3-based all-PSCs (6.42%) outperforms those of the P2 and P1 (5.00% and 2.65%)-based devices. The reduced charge recombination and the enhanced polymer exciton lifetime in P3-based all-PSCs are confirmed by the measurements of light-intensity dependent short-circuit current density (J<sub>SC</sub>) and V<sub>OC</sub>, and time-resolved photoluminescence. The results provide reciprocal understanding of the charge generation process associated with Δµ<sub>ge</sub> in all-PSCs and suggest an effective strategy for designing π-conjugated polymers for high performance all-PSCs.</p>