Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Park, Sinjung

  • Google
  • 1
  • 4
  • 46

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Multimodal Magnetic Nanoclusters for Gene Delivery, Directed Migration, and Tracking of Stem Cells46citations

Places of action

Chart of shared publication
Larson, Andrew C.
1 / 1 shared
Kim, Donghyun
1 / 6 shared
Park, Keunhong
1 / 1 shared
Park, Ji Sun
1 / 1 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Larson, Andrew C.
  • Kim, Donghyun
  • Park, Keunhong
  • Park, Ji Sun
OrganizationsLocationPeople

article

Multimodal Magnetic Nanoclusters for Gene Delivery, Directed Migration, and Tracking of Stem Cells

  • Larson, Andrew C.
  • Park, Sinjung
  • Kim, Donghyun
  • Park, Keunhong
  • Park, Ji Sun
Abstract

<jats:p>This study develops multimodal magnetic nanoclusters (M‐MNCs) for gene transfer, directed migration, and tracking of human mesenchymal stem cells (hMSCs). The M‐MNCs are designed with 5 nm iron oxide nanoparticles and a fluorescent dye (i.e., Rhodamine B) in the matrix of the Food and Drug Administration approved polymer poly(lactide‐<jats:italic>co</jats:italic>‐glycolide) using a nanoemulsion method. The synthesized M‐MNCs have a hydrodynamic diameter of ≈150 nm, are internalized by stem cells via endocytosis, and deliver genes with high efficiency. The cellular internalization and gene expression efficiency of the clustered nanoparticles are significantly higher than that of single nanoparticles. The M‐MNC‐labeled hMSCs migrate upon application of a magnetic force and can be visualized by both optical and magnetic resonance (MR) imaging. In animal models, the M‐MNC‐labeled hMSCs are also successfully tracked using optical and MR imaging. Thus, the M‐MNCs not only allow the efficient delivery of genes to stem cells but also the tracking of cells in animal models. Taken together, the results show that this new type of nanocomposite can be of great help in future stem cell research and in the development of cell‐based therapeutic agents.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • polymer
  • iron