Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mishra, Abhishek Kumar

  • Google
  • 3
  • 25
  • 231

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Heterostructure-based devices with enhanced humidity stability for H2 gas sensing applications in breath tests and portable batteries28citations
  • 2020Single CuO/Cu2O/Cu Microwire Covered by a Nanowire Network as a Gas Sensor for the Detection of Battery Hazards42citations
  • 2017Multifunctional Materials161citations

Places of action

Chart of shared publication
Bodduluri, Mani Teja
1 / 4 shared
Krueger, Helge
2 / 2 shared
Ababii, Nicolai
3 / 10 shared
Lupan, Oleg
3 / 31 shared
Wagner, Bernhard
1 / 9 shared
Adelung, Rainer
3 / 120 shared
Faupel, Franz
2 / 46 shared
Vahl, Alexander
2 / 14 shared
Hansen, Sandra
2 / 6 shared
Magariu, Nicolae
1 / 4 shared
Leeuw, Nora H. De
3 / 11 shared
Chow, Lee
1 / 4 shared
Duppel, Viola
1 / 9 shared
Schuermann, Ulrich
1 / 1 shared
Gronenberg, Ole
1 / 2 shared
Kienle, Lorenz
1 / 52 shared
Monteiro, Teresa
1 / 8 shared
Mishra, Yogendra Kumar
1 / 53 shared
Rodrigues, Joana
1 / 8 shared
Gröttrup, Jorit
1 / 4 shared
Sontea, Victor
1 / 3 shared
Sedrine, Nebiha Ben
1 / 1 shared
Postica, Vasile
1 / 18 shared
Correia, Maria Rosário
1 / 4 shared
Carreira, José F. C.
1 / 1 shared
Chart of publication period
2021
2020
2017

Co-Authors (by relevance)

  • Bodduluri, Mani Teja
  • Krueger, Helge
  • Ababii, Nicolai
  • Lupan, Oleg
  • Wagner, Bernhard
  • Adelung, Rainer
  • Faupel, Franz
  • Vahl, Alexander
  • Hansen, Sandra
  • Magariu, Nicolae
  • Leeuw, Nora H. De
  • Chow, Lee
  • Duppel, Viola
  • Schuermann, Ulrich
  • Gronenberg, Ole
  • Kienle, Lorenz
  • Monteiro, Teresa
  • Mishra, Yogendra Kumar
  • Rodrigues, Joana
  • Gröttrup, Jorit
  • Sontea, Victor
  • Sedrine, Nebiha Ben
  • Postica, Vasile
  • Correia, Maria Rosário
  • Carreira, José F. C.
OrganizationsLocationPeople

article

Multifunctional Materials

  • Monteiro, Teresa
  • Mishra, Yogendra Kumar
  • Mishra, Abhishek Kumar
  • Rodrigues, Joana
  • Leeuw, Nora H. De
  • Gröttrup, Jorit
  • Ababii, Nicolai
  • Lupan, Oleg
  • Adelung, Rainer
  • Sontea, Victor
  • Sedrine, Nebiha Ben
  • Postica, Vasile
  • Correia, Maria Rosário
  • Carreira, José F. C.
Abstract

<p>Hybrid metal oxide nano- and microstructures exhibit novel properties, which make them promising candidates for a wide range of applications, including gas sensing. In this work, the characteristics of the hybrid ZnO-Bi<sub>2</sub>O<sub>3</sub> and ZnO-Zn<sub>2</sub>SnO<sub>4</sub> tetrapod (T) networks are investigated in detail. The gas sensing studies reveal improved performance of the hybrid networks compared to pure ZnO-T networks. For the ZnO-T-Bi<sub>2</sub>O<sub>3</sub> networks, an enhancement in H<sub>2</sub> gas response is obtained, although the observed p-type sensing behavior is attributed to the formed junctions between the arms of ZnO-T covered with Bi<sub>2</sub>O<sub>3</sub> and the modulation of the regions where holes accumulate under exposure to H<sub>2</sub> gas. In ZnO-T-Zn<sub>2</sub>SnO<sub>4</sub> networks, a change in selectivity to CO gas with high response is noted. The devices based on individual ZnO-T-Bi<sub>2</sub>O<sub>3</sub> and ZnO-T-Zn<sub>2</sub>SnO<sub>4</sub> structures showed an enhanced H<sub>2</sub> gas response, which is explained on the basis of interactions (electronic sensitization) between the ZnO-T arm and Bi<sub>2</sub>O<sub>3</sub> shell layer and single Schottky contact structure, respectively. Density functional theory-based calculations provide mechanistic insights into the interaction of H<sub>2</sub> and CO gas molecules with Bi- and Sn-doped ZnO(0001) surfaces, revealing changes in the Fermi energies, as well as charge transfer between the molecules and surface species, which facilitate gas sensing.</p>

Topics
  • density
  • impedance spectroscopy
  • microstructure
  • surface
  • theory
  • density functional theory