People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gann, Eliot
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2022Reassessing the Significance of Reduced Aggregation and Crystallinity of Naphthalene Diimide-Based Copolymer Acceptors in All-Polymer Solar Cellscitations
- 2019Residual solvent additive enables the nanostructuring of PTB7-Th:PC71BM solar cells via soft lithographycitations
- 2018Tuning the Molecular Weight of the Electron Accepting Polymer in All-Polymer Solar Cellscitations
- 2018Nature and Extent of Solution Aggregation Determines the Performance of P(NDI2OD-T2) Thin-Film Transistorscitations
- 2018Impact of Acceptor Fluorination on the Performance of All-Polymer Solar Cellscitations
- 2018Thionation of naphthalene diimide moleculescitations
- 2018Blade Coating Aligned, High-Performance, Semiconducting-Polymer Transistorscitations
- 2018Design of New Isoindigo-Based Copolymer for Ambipolar Organic Field-Effect Transistorscitations
- 2017Understanding charge transport in lead iodide perovskite thin-film field-effect transistorscitations
- 2017Influence of fluorination on the microstructure and performance of diketopyrrolopyrrole‐based polymer solar cellscitations
- 2017Unconventional Molecular Weight Dependence of Charge Transport in the High Mobility n-type Semiconducting Polymer P(NDI2OD-T2)citations
- 2017Critical Role of Pendant Group Substitution on the Performance of Efficient All-Polymer Solar Cellscitations
- 2017Influence of fluorination on the microstructure and performance of diketopyrrolopyrrole-based polymer solar cellscitations
- 2017Influence of Fullerene Acceptor on the Performance, Microstructure, and Photophysics of Low Bandgap Polymer Solar Cellscitations
- 2017Isolating and quantifying the impact of domain purity on the performance of bulk heterojunction solar cellscitations
- 2016Metal Evaporation-Induced Degradation of Fullerene Acceptors in Polymer/Fullerene Solar Cellscitations
- 2016Impact of Fullerene Mixing Behavior on the Microstructure, Photophysics, and Device Performance of Polymer/Fullerene Solar Cellscitations
- 2016Coulomb Enhanced Charge Transport in Semicrystalline Polymer Semiconductorscitations
- 2016Vinylene-Linked Oligothiophene-Difluorobenzothiadiazole Copolymer for Transistor Applicationscitations
- 2016EDOT-diketopyrrolopyrrole copolymers for polymer solar cellscitations
- 2016Azido-Functionalized Thiophene as a Versatile Building Block to Cross-Link Low-Bandgap Polymerscitations
- 2015Increased exciton dipole moment translates into charge-transfer excitons in thiophene-fluorinated low-bandgap polymers for organic photovoltaic applicationscitations
Places of action
Organizations | Location | People |
---|
article
Coulomb Enhanced Charge Transport in Semicrystalline Polymer Semiconductors
Abstract
<p>Polymer semiconductors provide unique possibilities and flexibility in tailoring their optoelectronic properties to match specific application demands. The recent development of semicrystalline polymers with strongly improved charge transport properties forces a review of the current understanding of the charge transport mechanisms and how they relate to the polymer's chemical and structural properties. Here, the charge density dependence of field effect mobility in semicrystalline polymer semiconductors is studied. A simultaneous increase in mobility and its charge density dependence, directly correlated to the increase in average crystallite size of the polymer film, is observed. Further evidence from charge accumulation spectroscopy shows that charges accumulate in the crystalline regions of the polymer film and that the increase in crystallite size affects the average electronic orbitals delocalization. These results clearly point to an effect that is not caused by energetic disorder. It is instead shown that the inclusion of short range coulomb repulsion between charge carriers on nanoscale crystalline domains allows describing the observed mobility dependence in agreement with the structural and optical characterization. The conclusions that are extracted extend beyond pure transistor characterization and can provide new insights into charge carrier transport for regimes and timescales that are relevant to other optoelectronic devices.</p>