Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ayusosacido, Angel

  • Google
  • 1
  • 3
  • 49

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Biomechanical Cell Regulation by High Aspect Ratio Nanoimprinted Pillars49citations

Places of action

Chart of shared publication
Viela, Felipe
1 / 3 shared
Rodríguez, Isabel
1 / 3 shared
Granados, Daniel
1 / 5 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Viela, Felipe
  • Rodríguez, Isabel
  • Granados, Daniel
OrganizationsLocationPeople

article

Biomechanical Cell Regulation by High Aspect Ratio Nanoimprinted Pillars

  • Ayusosacido, Angel
  • Viela, Felipe
  • Rodríguez, Isabel
  • Granados, Daniel
Abstract

<jats:p>High aspect ratio pillared topographies provide a large number of mechanical cues that cells can sense and react to. High aspect ratio pillars have been employed effectively to promote stem cell differentiation and to probe cellular tractions. Yet, the full potential of these topographies for mechanobiology remains insufficiently characterized. Here, the response of progenitor neural stem cells to dense high aspect ratio polymer pillars in the nano‐ and microscale is investigated. Thermal nanoimprinting is utilized to fabricate with high precision well‐defined pillars with high density and aspect ratio. Studies on cell viability, morphology, cell spreading, and migration are performed comparatively to a control flat substrate. The traction forces exerted by the cells on the pillar structures are probed quantitatively by a combined focused ion beam scanning electron microscopy (FIB‐SEM) technique. The cell responses observed are distinctive for each dimension, following the trend that an increase in aspect ratio and feature size from nano‐ to micronscale results in more confined cell morphology with large cytoplasmic penetrations and nuclear deformation. Accordingly, cells seeded on the micrometer scale topography show reduced mobility, a persistent quasi‐directional migration, high traction forces, and a lower rate of proliferation. Cells on the nanotopography show higher rate of proliferation, a large cell spread, high mobility with random migration altogether with lower traction forces.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • polymer
  • mobility
  • scanning electron microscopy
  • focused ion beam
  • random