People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bayerlein, Bernd
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Enhancing reproducibility in precipitate analysis: A FAIR approach with automated dark-field transmission electron microscope image processingcitations
- 2020Focused ion beam techniques beyond the ordinary - Methodological developments within ADVENT
- 2016Inherent Role of Water in Damage Tolerance of the Prismatic Mineral–Organic Biocomposite in the Shell of Pinna Nobiliscitations
- 2014Nanostructure of Biogenic Calcite and Its Modification under Annealing: Study by High-Resolution X-ray Diffraction and Nanoindentationcitations
- 2014Self-similar mesostructure evolution of the growing mollusc shell reminiscent of thermodynamically driven grain growthcitations
Places of action
Organizations | Location | People |
---|
article
Inherent Role of Water in Damage Tolerance of the Prismatic Mineral–Organic Biocomposite in the Shell of Pinna Nobilis
Abstract
<p>The combination of high stiffness, strength, and toughness of many biological tissues is achieved through complex 3D arrangement of hard and soft components. While the hard building blocks are associated with the general stiffness of these biocomposite structures, the soft organic constituents provide the necessary flexibility and toughness and are susceptible to moisture uptake. Because many biological materials reside in humid environments, water is an inherent component of their microstructure. Hence, many studies have emphasized the effect of moisture content on mechanical performance of these materials. High toughness is indeed reported in materials, such as bone, teeth, mollusk shells, and glass sponges, when measured in high relative humidities, nevertheless, not much is known about the exact mechanisms that are responsible for this phenomenon. In the present work, newly developed environmentally controlled nanomechanical characterization techniques are employed to probe the prismatic layer in the shell of Pinna nobilis consisting of hard calcitic blocks surrounded by 1 μm thick organic matrix. Using spatially resolved mechanical data, it is demonstrated that water not only strongly affects the mechanical properties of the biocomposite tissue and its constituents but also is an integral part of explicit intrinsic and extrinsic toughening mechanisms revealed in this study.</p>