People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Meyer, Steffen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2017Polypyridyl Iron Complex as a Hole-Transporting Material for Formamidinium Lead Bromide Perovskite Solar Cellscitations
- 2017A facile deposition method for CuSCN: Exploring the influence of CuSCN on J-V hysteresis in planar perovskite solar cellscitations
- 2016Enhancing the Optoelectronic Performance of Perovskite Solar Cells via a Textured CH3NH3PbI3 Morphologycitations
- 2016Parameters responsible for the degradation of CH3NH3PbI3-based solar cells on polymer substratescitations
- 2016Enhancing the optoelectronic performance of perovskite solar cells via a textured CH3NH3PbI3 morphologycitations
Places of action
Organizations | Location | People |
---|
article
Enhancing the optoelectronic performance of perovskite solar cells via a textured CH3NH3PbI3 morphology
Abstract
Perovskite-based solar cells are generally assembled as planar structures comprising a flat organoammonium metal halide perovskite layer, or mesoscopic structures employing a mesoporous metal-oxide scaffold into which the perovskite material is infiltrated. To present, little attention has been directed toward the texturing of the perovskite material itself. Herein, a textured CH3NH3PbI3 morphology formed through a thin mesoporous TiO2 seeding layer and a gas-assisted crystallization method is reported. The textured morphology comprises a multitiered nanostructure, which allows for significant improvements in the light harvesting and charge extraction performance of the solar cells. Due to these improvements, average short-circuit current densities for a batch of 28 devices are in excess of 22 mA cm−2, and the maximum recorded power conversion efficiency is 16.3%. The performance gains concomitant with this textured CH3NH3PbI3 morphology provide further insights into how control of the perovskite microstructure can be used to enhance the cell performance.