People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Prodromakis, Themistoklis
University of Edinburgh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Solid polymer electrolytes with enhanced electrochemical stability for high-capacity aluminum batteriescitations
- 2024Forming-free and non-linear resistive switching in bilayer HfOx/TaOx memory devices by interface-induced internal resistancecitations
- 2024Forming-free and non-linear resistive switching in bilayer HfO x /TaO x memory devices by interface-induced internal resistancecitations
- 2022Low-power supralinear photocurrent generation via excited state fusion in single-component nanostructured organic photodetectorscitations
- 2022Nanocellulose-based flexible electrodes for safe and sustainable energy storage
- 2020Poly(N-isopropylacrylamide) based thin microgel films for use in cell culture applicationscitations
- 2019An electrical characterisation methodology for identifying the switching mechanism in TiO2 memristive stackscitations
- 2019A digital in-analogue out logic gate based on metal-oxide memristor devices
- 2018Processing big-data with memristive technologiescitations
- 2018A comprehensive technology agnostic RRAM characterisation protocol
- 2018Interface barriers at Metal – TiO2 contacts
- 2018Electrothermal deterioration factors in gold planar inductors designed for microscale bio-applicationscitations
- 2017Impact of ultra-thin Al2O3–y layers on TiO2–x ReRAM switching characteristicscitations
- 2017Impact of ultra-thin Al 2 O 3–y layers on TiO 2–x ReRAM switching characteristicscitations
- 2016Spatially resolved TiOx phases in switched RRAM devices using soft X-ray spectromicroscopycitations
- 2016X-ray spectromicroscopy investigation of soft and hard breakdown in RRAM devicescitations
- 2016An amorphous titanium dioxide metal insulator metal selector device for resistive random access memory crossbar arrays with tunable voltage margincitations
- 2016Engineering the switching dynamics of TiOx-based RRAM with Al dopingcitations
- 2016Al-doping engineered electroforming and switching dynamics of TiOx ReRAM devices
- 2016Role and optimization of the active oxide layer in TiO2-based RRAMcitations
- 2016Engineering PDMS topography on microgrooved Parylene C
- 2009Engineering the Maxwell-Wagner polarization effectcitations
- 2009Application of gold nanodots for Maxwell-Wagner loss reduction
Places of action
Organizations | Location | People |
---|
article
Role and optimization of the active oxide layer in TiO2-based RRAM
Abstract
TiO<sub>2</sub> is commonly used as the active switching layer in resistive random access memory. The electrical characteristics of these devices are directly related to the fundamental conditions inside the TiO<sub>2</sub> layer and at the interfaces between it and the surrounding electrodes. However, it is complex to disentangle the effects of film “bulk” properties and interface phenomena. The present work uses hard X-ray photoemission spectroscopy (HAXPES) at different excitation energies to distinguish between these regimes. Changes are found to affect the entire thin film, but the most dramatic effects are confined to an interface. These changes are connected to oxygen ions moving and redistributing within the film. Based on the HAXPES results, post-deposition annealing of the TiO<sub>2</sub> thin film was investigated as an optimisation pathway in order to reach an ideal compromise between device resistivity and lifetime. The structural and chemical changes upon annealing are investigated using X-ray absorption spectroscopy and are further supported by a range of bulk and surface sensitive characterisation methods. In summary, it is shown that the management of oxygen content and interface quality is intrinsically important to device behavior and that careful annealing procedures are a powerful device optimisation technique.