Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nijland, Maarten

  • Google
  • 3
  • 13
  • 41

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2017Tuning of large piezoelectric response in nanosheet-buffered lead zirconate titanate films on glass substrates14citations
  • 2015Epitaxy on Demand17citations
  • 2014Patterning of Epitaxial Perovskites from Micro and Nano Molded Stencil Masks10citations

Places of action

Chart of shared publication
Ten Elshof, Johan E.
1 / 11 shared
Bayraktar, Muharrem
1 / 3 shared
Rijnders, Guus
3 / 20 shared
Bijkerk, Frederik
1 / 10 shared
Chopra, A.
1 / 1 shared
Koster, Gertjan
2 / 31 shared
Smithers, Mark A.
1 / 3 shared
Blank, Dave H. A.
2 / 5 shared
Thomas, Sean
2 / 2 shared
Banerjee, Nirupam
1 / 2 shared
Elshof, Johan E. Ten
2 / 6 shared
Houwman, Evert P.
1 / 3 shared
George, Antony
1 / 19 shared
Chart of publication period
2017
2015
2014

Co-Authors (by relevance)

  • Ten Elshof, Johan E.
  • Bayraktar, Muharrem
  • Rijnders, Guus
  • Bijkerk, Frederik
  • Chopra, A.
  • Koster, Gertjan
  • Smithers, Mark A.
  • Blank, Dave H. A.
  • Thomas, Sean
  • Banerjee, Nirupam
  • Elshof, Johan E. Ten
  • Houwman, Evert P.
  • George, Antony
OrganizationsLocationPeople

article

Epitaxy on Demand

  • Koster, Gertjan
  • Smithers, Mark A.
  • Rijnders, Guus
  • Blank, Dave H. A.
  • Nijland, Maarten
  • Thomas, Sean
  • Banerjee, Nirupam
  • Elshof, Johan E. Ten
Abstract

<jats:p>Perovskite oxide heteroepitaxy is realized on the top of inorganic nanosheets that are covering the amorphous oxide surfaces of Si substrates. Utilizing pulsed laser deposition, thin films of SrRuO<jats:sub>3</jats:sub> in a (001)<jats:sub>pc</jats:sub> and (110)<jats:sub>pc</jats:sub> orientation on nanosheets of Ca<jats:sub>2</jats:sub>Nb<jats:sub>3</jats:sub>O<jats:sub>10</jats:sub> and Ti<jats:sub>0.87</jats:sub>O<jats:sub>2</jats:sub> are grown, respectively. The two types of nanosheets are patterned to locally tailor the crystallographic orientation and properties of SrRuO<jats:sub>3</jats:sub>. The success of our approach is demonstrated by electron backscatter diffraction and spatial magnetization maps. An unprecedented control of perovskite film growth on arbitrary substrates is illustrated in this work, and the methods that are developed to deposit SrRuO<jats:sub>3</jats:sub> thin films are a viable starting point for growth of artificial heteroepitaxial thin films that require a bottom electrode. Control is not just reached in the direction of film growth, as the crystal orientation and film properties are regulated laterally on the surface of micropatterned nanosheets. Local control of magnetic properties is illustrated, which holds out prospects for the fabrication of next‐generation devices like noncollinear magnetic random access memories.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • surface
  • amorphous
  • thin film
  • random
  • electron backscatter diffraction
  • pulsed laser deposition
  • magnetization