People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Skelton, Jonathan M.
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2024Electronic transport and the thermoelectric properties of donor-doped SrTiO3citations
- 2024Composition-dependent morphologies of CeO2 nanoparticles in the presence of Co-adsorbed H2O and CO2citations
- 2024Composition-dependent morphologies of CeO 2 nanoparticles in the presence of Co-adsorbed H 2 O and CO 2 : a density functional theory studycitations
- 2023Thermoelectric properties of Pnma and R3m GeS and GeSecitations
- 2023A Low‐Temperature Synthetic Route Toward a High‐Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysiscitations
- 2023A Low‐Temperature Synthetic Route Toward a High‐Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysiscitations
- 2023Breathing Behaviour Modification of Gallium MIL‐53 Metal–Organic Frameworks Induced by the Bridging Framework Inorganic Anioncitations
- 2023Synthetic Strategies toward High Entropy Materials: Atoms-to-Lattices for Maximum Disordercitations
- 2023Enhanced Thermoelectric Performance of Tin(II) Sulfide Thin Films Prepared by Aerosol Assisted Chemical Vapor Depositioncitations
- 2020Polymorph exploration of bismuth stannate using first-principles phonon mode mappingcitations
- 2020Lattice dynamics of Pnma Sn(S1-xSex) solid solutions: energetics, phonon spectra and thermal transportcitations
- 2020Assessment of dynamic structural instabilities across 24 cubic inorganic halide perovskitescitations
- 2020Watching Photochemistry Happencitations
- 2019Thermodynamics, Electronic Structure, and Vibrational Properties of Sn n(S 1- xSe x) m Solid Solutions for Energy Applicationscitations
- 2019Room Temperature Metallic Conductivity in a Metal–Organic Framework Induced by Oxidationcitations
- 2019Thermodynamics, Electronic Structure, and Vibrational Properties of Sn n (S 1– x Se x) m Solid Solutions for Energy Applicationscitations
- 2019Photocrystallographic studies on transition metal nitrito metastable linkage isomers: manipulating the metastable statecitations
- 2018Acoustic phonon lifetimes limit thermal transport in methylammonium lead iodidecitations
- 2018Understanding the fast phase-change mechanism of tetrahedrally bonded Cu 2 GeTe 3 :Comprehensive analyses of electronic structure and transport phenomenacitations
- 2018Understanding the fast phase-change mechanism of tetrahedrally bonded Cu2GeTe3citations
- 2018Hydrogen Bonding versus Entropycitations
- 2017Chemical and Lattice Stability of the Tin Sulfidescitations
- 2016Phonon anharmonicity, lifetimes, and thermal transport in CH 3 NH 3 PbI 3 from many-body perturbation theorycitations
- 2016Phonon anharmonicity, lifetimes, and thermal transport in CH3NH3PbI3 from many-body perturbation theorycitations
- 2016Observation of a re-entrant phase transition in the molecular complex tris(μ2-3,5-diisopropyl-1,2,4-triazolato-κ2N1:N2)trigold(I) under high pressurecitations
- 2016A general forcefield for accurate phonon properties of metal-organic frameworkscitations
- 2016Band alignments, valence bands, and core levels in the tin sulfides SnS, SnS2, and Sn2S3citations
- 2016Computational materials design of crystalline solidscitations
- 2015Influence of the exchange-correlation functional on the quasi-harmonic lattice dynamics of II-VI semiconductorscitations
- 2014Atomistic origin of the enhanced crystallization speed and n-type conductivity in Bi-doped Ge-Sb-Te phase-change materialscitations
Places of action
Organizations | Location | People |
---|
article
Atomistic origin of the enhanced crystallization speed and n-type conductivity in Bi-doped Ge-Sb-Te phase-change materials
Abstract
Phase-change alloys are the functional materials at the heart of an emerging digital-storage technology. The GeTe-Sb2Te3 pseudo-binary systems, in par- ticular the composition Ge2Sb2Te5 (GST), are one of a handful of materials which meet the unique requirements of a stable amorphous phase, rapid amorphous-to-crystalline phase transition, and significant contrasts in optical and electrical properties between material states. The properties of GST can be optimized by doping with p-block elements, of which Bi has interesting effects on the crystallization kinetics and electrical properties. A comprehen- sive simulational study of Bi-doped GST is carried out, looking at trends in behavior and properties as a function of dopant concentration. The results reveal how Bi integrates into the host matrix, and provide insight into its enhancement of the crystallization speed. A straightforward explanation is proposed for the reversal of the charge-carrier sign beyond a critical doping threshold. The effect of Bi on the optical properties of GST is also investigated. The microscopic insight from this study may assist in the future selection of dopants to optimize the phase-change properties of GST, and also of other PCMs, and the general methods employed in this work should be applicable to the study of related materials, for example, doped chalcogenide glasses.