People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rijnders, Guus
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Enhanced Piezoelectricity by Polarization Rotation through Thermal Strain Manipulation in PbZr<sub>0.6</sub>Ti<sub>0.4</sub>O<sub>3</sub> Thin Films
- 2024The effect of intrinsic magnetic order on electrochemical water splittingcitations
- 2024Stabilizing Perovskite Pb(Mg<sub>0.33</sub>Nb<sub>0.67</sub>)O<sub>3</sub>-PbTiO<sub>3</sub> Thin Films by Fast Deposition and Tensile Mismatched Growth Templatecitations
- 2023On the importance of the SrTiO3 template and the electronic contact layer for the integration of phase-pure low hysteretic Pb(Mg0.33Nb0.67)O3-PbTiO3 layers with Sicitations
- 2021Growth and crystallization of sio2/geo2 thin films on si(100) substratescitations
- 2021Growth and crystallization of sio 2 /geo 2 thin films on si(100) substratescitations
- 2020Single-Source, Solvent-Free, Room Temperature Deposition of Black γ-CsSnI 3 Filmscitations
- 2020Origins of infrared transparency in highly conductive perovskite stannate BaSnO3citations
- 2020Single‐Source, Solvent‐Free, Room Temperature Deposition of Black γ‐CsSnI3 Filmscitations
- 2020Epitaxial growth of full range of compositions of (1 1 1) PbZr1- xTixO3 on GaNcitations
- 2017Tuning of large piezoelectric response in nanosheet-buffered lead zirconate titanate films on glass substratescitations
- 2017One step toward a new generation of C-MOS compatible oxide PN junctionscitations
- 2016Long-range domain structure and symmetry engineering by interfacial oxygen octahedral coupling at heterostructure interfacecitations
- 2016A flexoelectric microelectromechanical system on siliconcitations
- 2015Epitaxy on Demandcitations
- 2014Patterning of Epitaxial Perovskites from Micro and Nano Molded Stencil Maskscitations
- 2012High-Temperature Magnetic Insulating Phase in Ultrathin La0.67Sr0.33MnO3 Filmscitations
- 2011Metallic and Insulating Interfaces of Amorphous SrTiO3-Based Oxide Heterostructurescitations
- 2009Low-temperature solution synthesis of chemically functional ferromagnetic FePtAu nanoparticlescitations
- 2007Magnetic effects at the interface between non-magnetic oxidescitations
Places of action
Organizations | Location | People |
---|
article
Patterning of Epitaxial Perovskites from Micro and Nano Molded Stencil Masks
Abstract
<jats:p>A process is developed that combines soft lithographic molding with pulsed laser deposition (PLD) to make heteroepitaxial patterns of functional perovskite oxide materials. Micro‐ and nanostructures of sacrificial ZnO are made by micro molding in capillaries (MiMiC) and nano transfer molding, respectively, and used to screen the single crystalline substrates during subsequent PLD. ZnO is used because of its compatibility with the high temperatures reached during PLD and because of the ease of its removal after use by benefiting from its amphoteric nature. Sub‐micrometer sized lines of La<jats:sub>0.67</jats:sub>Sr<jats:sub>0.33</jats:sub>MnO<jats:sub>3</jats:sub> are made by the transfer molding approach, preserving the anisotropic features expected for a fully oriented thin film and taking account for the magnetostatic contribution from the line shapes. Different patterns of SrRuO<jats:sub>3</jats:sub> are made with lateral dimensions of a few micrometers having individual features for which electrical isolation is illustrated. The bottom‐up soft lithographic methods can be compliantly utilized for making epitaxial structures of various shapes and sizes in the μm down to the nm range, and offer unique opportunities for fundamental studies as well as for realizing technological applications.</jats:p>