Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zhang, Huairuo

  • Google
  • 6
  • 38
  • 413

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Single‐Phase <i>L</i>1<sub>0</sub>‐Ordered High Entropy Thin Films with High Magnetic Anisotropy4citations
  • 2023Energy Efficient Neuro-inspired Phase Change Memory Based on Ge4 Sb6 Te7 as a Novel Epitaxial Nanocomposite.18citations
  • 2020On-the-fly closed-loop materials discovery via Bayesian active learning296citations
  • 2015Stabilisation of Fe2O3-rich Perovskite Nanophase in Epitaxial Rare-earth Doped BiFeO3 Films9citations
  • 2015Stabilisation of Fe2O3-rich perovskite nanophase in epitaxial rare-earth doped BiFeO3 films9citations
  • 2014Influence of a Single Grain Boundary on Domain Wall Motion in Ferroelectrics77citations

Places of action

Chart of shared publication
Beeson, Willie B.
1 / 2 shared
Davydov, Albert
3 / 4 shared
Wu, Xiangjin
1 / 1 shared
Vora, Patrick M.
1 / 1 shared
Kwon, Heungdong
1 / 1 shared
Goggin, John R.
1 / 1 shared
Takeuchi, Ichiro
1 / 11 shared
Asheghi, Mehdi
1 / 3 shared
Perez, Christopher
1 / 2 shared
Yu, Heshan
2 / 2 shared
Goodson, Kenneth E.
1 / 5 shared
Khan, Asir Intisar
1 / 1 shared
Neilson, Kathryn M.
1 / 3 shared
Sarker, Suchismita
1 / 5 shared
Oses, Corey
1 / 3 shared
Ichiro, Takeuchi
1 / 2 shared
Wu, Changming
1 / 1 shared
Curtarolo, Stefano
1 / 12 shared
Decost, Brian
1 / 1 shared
Hattrick-Simpers, Jason
1 / 1 shared
Toher, Cormac
1 / 8 shared
Bendersky, Leonid A.
1 / 2 shared
Reaney, Ian M.
3 / 11 shared
Maclaren, Ian
2 / 18 shared
Ramasse, Quentin M.
2 / 65 shared
Rainforth, W. Mark
2 / 19 shared
Marincel, Daniel M.
3 / 3 shared
Trolier-Mckinstry, Susan
3 / 14 shared
Ren, Wei
2 / 3 shared
Findlay, Scott D.
1 / 2 shared
Ross, Ian M.
2 / 4 shared
Fraleigh, Robert D.
2 / 2 shared
Hu, Shunbo
2 / 3 shared
Randall, Clive A.
1 / 7 shared
Rainforth, W. M.
1 / 44 shared
Kumar, Amit
1 / 23 shared
Jesse, Stephen
1 / 14 shared
Kalinin, Sergei V.
1 / 18 shared
Chart of publication period
2024
2023
2020
2015
2014

Co-Authors (by relevance)

  • Beeson, Willie B.
  • Davydov, Albert
  • Wu, Xiangjin
  • Vora, Patrick M.
  • Kwon, Heungdong
  • Goggin, John R.
  • Takeuchi, Ichiro
  • Asheghi, Mehdi
  • Perez, Christopher
  • Yu, Heshan
  • Goodson, Kenneth E.
  • Khan, Asir Intisar
  • Neilson, Kathryn M.
  • Sarker, Suchismita
  • Oses, Corey
  • Ichiro, Takeuchi
  • Wu, Changming
  • Curtarolo, Stefano
  • Decost, Brian
  • Hattrick-Simpers, Jason
  • Toher, Cormac
  • Bendersky, Leonid A.
  • Reaney, Ian M.
  • Maclaren, Ian
  • Ramasse, Quentin M.
  • Rainforth, W. Mark
  • Marincel, Daniel M.
  • Trolier-Mckinstry, Susan
  • Ren, Wei
  • Findlay, Scott D.
  • Ross, Ian M.
  • Fraleigh, Robert D.
  • Hu, Shunbo
  • Randall, Clive A.
  • Rainforth, W. M.
  • Kumar, Amit
  • Jesse, Stephen
  • Kalinin, Sergei V.
OrganizationsLocationPeople

article

Influence of a Single Grain Boundary on Domain Wall Motion in Ferroelectrics

  • Randall, Clive A.
  • Rainforth, W. M.
  • Reaney, Ian M.
  • Kumar, Amit
  • Zhang, Huairuo
  • Jesse, Stephen
  • Marincel, Daniel M.
  • Trolier-Mckinstry, Susan
  • Kalinin, Sergei V.
Abstract

Epitaxial tetragonal 425 and 611 nm thick Pb(ZrTi)O (PZT) films are deposited by pulsed laser deposition on SrRuO-coated (100) SrTiO 24° tilt angle bicrystal substrates to create a single PZT grain boundary with a well-defined orientation. On either side of the bicrystal boundary, the films show square hysteresis loops and have dielectric permittivities of 456 and 576, with loss tangents of 0.010 and 0.015, respectively. Using piezoresponse force microscopy (PFM), a decrease in the nonlinear piezoelectric response is observed in the vicinity (720-820 nm) of the grain boundary. This region represents the width over which the extrinsic contributions to the piezoelectric response (e.g., those associated with the domain density/configuration and/or the domain wall mobility) are influenced by the presence of the grain boundary. Transmission electron microscope (TEM) images collected near and far from the grain boundary indicate a strong preference for (101)/(1-01) type domain walls at the grain boundary, whereas (011)/(01-1) and (101)/(1-01) are observed away from this region. It is proposed that the elastic strain field at the grain boundary interacts with the ferro-electric/elastic domain structure, stabilizing (101)/(1-01) rather than (011)/(01-1) type domain walls, which inhibits domain wall motion under applied field and decreases non-linearity.

Topics
  • density
  • impedance spectroscopy
  • grain
  • mobility
  • grain boundary
  • transmission electron microscopy
  • pulsed laser deposition