Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nikolov, Pavel M.

  • Google
  • 2
  • 10
  • 38

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017DNA-SMART18citations
  • 2014Biofunctional Micropatterning of Thermoformed 3D Substrates20citations

Places of action

Chart of shared publication
Schneider, Ann-Kathrin
1 / 1 shared
Niemeyer, Christof M.
1 / 10 shared
Giselbrecht, Stefan
2 / 14 shared
Lahann, Joerg
1 / 20 shared
Waldbaur, Ansgar
1 / 2 shared
Rapp, Bastian E.
1 / 16 shared
Bally, Florence
1 / 5 shared
Waterkotte, Bjoern
1 / 1 shared
Schmitz, Katja
1 / 2 shared
Truckenmüller, Roman
1 / 14 shared
Chart of publication period
2017
2014

Co-Authors (by relevance)

  • Schneider, Ann-Kathrin
  • Niemeyer, Christof M.
  • Giselbrecht, Stefan
  • Lahann, Joerg
  • Waldbaur, Ansgar
  • Rapp, Bastian E.
  • Bally, Florence
  • Waterkotte, Bjoern
  • Schmitz, Katja
  • Truckenmüller, Roman
OrganizationsLocationPeople

article

Biofunctional Micropatterning of Thermoformed 3D Substrates

  • Lahann, Joerg
  • Nikolov, Pavel M.
  • Waldbaur, Ansgar
  • Rapp, Bastian E.
  • Bally, Florence
  • Waterkotte, Bjoern
  • Giselbrecht, Stefan
  • Schmitz, Katja
  • Truckenmüller, Roman
Abstract

Mimicking the in vivo microenvironment of cells is a challenging task in engineering in vitro cell models. Surface functionalization is one of the key components providing biochemical cues to regulate the interaction between cells and their substrate. In this study, two different approaches yield biofunctional surface patterns on thermoformed polymer films. The first strategy based on maskless projection lithography enables the creation of grayscale patterns of biological ligands with a resolution of 7.5 µm in different shapes on a protein layer adsorbed on a polymer film. In the second strategy, polymer films are micropatterned with different functional groups via chemical vapor deposition polymerization. After thermoforming, both types of pattern can be decorated with proteins either by affinity binding or covalent coupling. The 3d microstructures retain the biofunctional patterns as demonstrated by selective cell adhesion and growth of l929 mouse fibroblasts. This combination of functional micropatterning and thermoforming offers new perspectives for the design of 3d cell culture platforms.

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • polymer
  • functionalization
  • chemical vapor deposition
  • lithography