Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Prestat, Michel

  • Google
  • 12
  • 56
  • 293

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2024TiNx based protective coatings for corrosion protection of 316L stainless steel bipolar plates under PEMWE anode-like conditionscitations
  • 2024Fatigue-corrosion behaviour of Ti6Al4V alloys in H2O2-containing physiological solutioncitations
  • 2024H2O2-driven corrosion of Ti6Al4V investigated by electrochemical impedance spectroscopy and quantitative microstructure analysiscitations
  • 2023In vitro corrosion and stress corrosion cracking of Ti6Al4V alloy in H2O2-containing physiological solutionscitations
  • 2015Influence of strontium-rich pore-filling phase on the performance of La0.6Sr0.4CoO3−δ thin-film cathodes8citations
  • 2014Effects of sintering temperature on composition, microstructure and electrochemical performance of spray pyrolysed LSC thin film cathodescitations
  • 2013On Proton Conductivity in Porous and Dense Yttria Stabilized Zirconia at Low Temperature117citations
  • 2013Precursor Decomposition, Microstructure, and Porosity of Yttria Stabilized Zirconia Thin Films Prepared by Aerosol‐Assisted Chemical Vapor Deposition29citations
  • 2013Performance of Atomic-Layer-Deposited Yttria-Stabilized Zirconia Near Room Temperature1citations
  • 2013Gadolinia Doped Ceria Thin Films Prepared by Aerosol Assisted Chemical Vapor Deposition and Applications in Intermediate‐Temperature Solid Oxide Fuel Cells30citations
  • 2012Residual stress and buckling patterns of yttria-stabilised-zirconia thin films for micro-solid oxide fuel cell membranes4citations
  • 2004Solid Oxide Fuel Cells: Systems and Materials104citations

Places of action

Chart of shared publication
Lescop, Benoit
1 / 7 shared
Rioual, Stéphane
1 / 15 shared
Helbert, Varvara
1 / 1 shared
Joanny, Loïc
1 / 10 shared
Vucko, Flavien
3 / 7 shared
Maranzana, Gaël
1 / 5 shared
Rault, Ludivine
1 / 1 shared
Chergui, Khaoula
1 / 1 shared
Gouttefangeas, Francis
1 / 5 shared
Demange, Valérie
1 / 33 shared
Walls, M.
1 / 7 shared
Safa, Yasser
3 / 4 shared
Ringot, Geoffrey
2 / 2 shared
Marmet, Philip
3 / 13 shared
Holzer, Lorenz
5 / 38 shared
Perrin, Laura
2 / 2 shared
Logé, Roland
2 / 15 shared
Banait, Shruti
2 / 2 shared
Dumouchel, Maxime
2 / 2 shared
Vucko, Flavio
1 / 1 shared
Flatt, Robert J.
2 / 9 shared
Pecho, Omar
2 / 6 shared
Martynczuk, Julia
4 / 8 shared
Hocker, Thomas
3 / 18 shared
Yáng, Zhèn
2 / 2 shared
Lippert, Thomas
1 / 37 shared
Stender, Dieter
1 / 4 shared
Gauckler, Ludwig J.
4 / 23 shared
Grolig, Jan G.
1 / 9 shared
Schlupp, Meike V. F.
3 / 7 shared
Ma, Huan
1 / 7 shared
Scherrer, Barbara
1 / 4 shared
Kocher, Peter
1 / 3 shared
Jang, Dong Young
1 / 2 shared
Shim, Joon Hyung
1 / 3 shared
Kim, Hokeun
1 / 1 shared
Bae, Kiho
1 / 2 shared
Son, J. W.
1 / 1 shared
Yáng, Z.
1 / 1 shared
Martynczuk, J.
1 / 1 shared
Gauckler, L. J.
1 / 8 shared
Schlupp, M. V. F.
1 / 1 shared
Kurlov, A.
1 / 1 shared
Döbeli, M.
1 / 30 shared
Hwang, J.
1 / 6 shared
Evans, Anna
1 / 1 shared
Courbat, Jérôme
1 / 1 shared
Tölke, René
1 / 1 shared
Briand, Danick
1 / 5 shared
De Rooij, Nico
1 / 1 shared
Beckel, Daniel
1 / 2 shared
Muecke, Ulrich P.
1 / 1 shared
Rupp, Jennifer L. M.
1 / 13 shared
Richter, Jörg
1 / 1 shared
Buergler, Brandon E.
1 / 1 shared
Jud, Eva
1 / 1 shared
Chart of publication period
2024
2023
2015
2014
2013
2012
2004

Co-Authors (by relevance)

  • Lescop, Benoit
  • Rioual, Stéphane
  • Helbert, Varvara
  • Joanny, Loïc
  • Vucko, Flavien
  • Maranzana, Gaël
  • Rault, Ludivine
  • Chergui, Khaoula
  • Gouttefangeas, Francis
  • Demange, Valérie
  • Walls, M.
  • Safa, Yasser
  • Ringot, Geoffrey
  • Marmet, Philip
  • Holzer, Lorenz
  • Perrin, Laura
  • Logé, Roland
  • Banait, Shruti
  • Dumouchel, Maxime
  • Vucko, Flavio
  • Flatt, Robert J.
  • Pecho, Omar
  • Martynczuk, Julia
  • Hocker, Thomas
  • Yáng, Zhèn
  • Lippert, Thomas
  • Stender, Dieter
  • Gauckler, Ludwig J.
  • Grolig, Jan G.
  • Schlupp, Meike V. F.
  • Ma, Huan
  • Scherrer, Barbara
  • Kocher, Peter
  • Jang, Dong Young
  • Shim, Joon Hyung
  • Kim, Hokeun
  • Bae, Kiho
  • Son, J. W.
  • Yáng, Z.
  • Martynczuk, J.
  • Gauckler, L. J.
  • Schlupp, M. V. F.
  • Kurlov, A.
  • Döbeli, M.
  • Hwang, J.
  • Evans, Anna
  • Courbat, Jérôme
  • Tölke, René
  • Briand, Danick
  • De Rooij, Nico
  • Beckel, Daniel
  • Muecke, Ulrich P.
  • Rupp, Jennifer L. M.
  • Richter, Jörg
  • Buergler, Brandon E.
  • Jud, Eva
OrganizationsLocationPeople

article

On Proton Conductivity in Porous and Dense Yttria Stabilized Zirconia at Low Temperature

  • Lippert, Thomas
  • Prestat, Michel
  • Stender, Dieter
  • Gauckler, Ludwig J.
  • Martynczuk, Julia
  • Grolig, Jan G.
  • Schlupp, Meike V. F.
  • Ma, Huan
  • Scherrer, Barbara
  • Kocher, Peter
Abstract

<jats:title>Abstract</jats:title><jats:p>The electrical conductivity of dense and nanoporous zirconia‐based thin films is compared to results obtained on bulk yttria stabilized zirconia (YSZ) ceramics. Different thin film preparation methods are used in order to vary grain size, grain shape, and porosity of the thin films. In porous films, a rather high conductivity is found at room temperature which decreases with increasing temperature to 120 °C. This conductivity is attributed to proton conduction along physisorbed water (Grotthuss mechanism) at the inner surfaces. It is highly dependent on the humidity of the surrounding atmosphere. At temperatures above 120 °C, the conductivity is thermally activated with activation energies between 0.4 and 1.1 eV. In this temperature regime the conduction is due to oxygen ions as well as protons. Proton conduction is caused by hydroxyl groups at the inner surface of the porous films. The effect vanishes above 400 °C, and pure oxygen ion conductivity with an activation energy of 0.9 to 1.3 eV prevails. The same behavior can also be observed in nanoporous bulk ceramic YSZ. In contrast to the nanoporous YSZ, fully dense nanocrystalline thin films only show oxygen ion conductivity, even down to 70 °C with an expected activation energy of 1.0 ± 0.1 eV. No proton conductivity through grain boundaries could be detected in these nanocrystalline, but dense thin films.</jats:p>

Topics
  • porous
  • impedance spectroscopy
  • surface
  • grain
  • grain size
  • thin film
  • Oxygen
  • activation
  • porosity
  • ceramic
  • electrical conductivity