Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Urrutia, J.

  • Google
  • 1
  • 5
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008Nanoporous organosilicate films prepared in acidic conditions using tetraalkylammonium bromide porogens9citations

Places of action

Chart of shared publication
Maex, K.
1 / 3 shared
Eslava, Salvador
1 / 23 shared
Kirschhock, C. E. A.
1 / 2 shared
Martens, J. A.
1 / 4 shared
Baklanov, M. R.
1 / 8 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Maex, K.
  • Eslava, Salvador
  • Kirschhock, C. E. A.
  • Martens, J. A.
  • Baklanov, M. R.
OrganizationsLocationPeople

article

Nanoporous organosilicate films prepared in acidic conditions using tetraalkylammonium bromide porogens

  • Maex, K.
  • Eslava, Salvador
  • Kirschhock, C. E. A.
  • Martens, J. A.
  • Urrutia, J.
  • Baklanov, M. R.
Abstract

Organosilicate films with narrow pore size distribution tunable in the range of 1-3.4 nm were prepared by spin-coating of silicon wafers with sols prepared in acidic conditions using tetraethyl orthosilicate, methyltrimethoxysilane, and tetraalkylammonium bromide (TAABr) porogen. The pore size was defined by the alkyl chain length of the quaternary ammonium molecule and the porogen concentration. The pore network in the films and the hydrophobicity of the pore surfaces were characterized using ellipsometric porosimetry with toluene and water adsorbates. In the absence of TAABr. the pore volume was 9 vol% and the pore size 1 nm. By using TAABr porogens, monomodal pore size distributions were obtained in the range of 1.2-3.5 nm. The pore volume was in the range from 18 vol % at 1.2 nm pore diameter up to 54 vol% at 3.5 nm diameter. The hydrophobicity of the pores was dependent on the pore diameter, with smaller pores being the least hydrophobic. The increase of hydrophobicity with pore size was explained by an increased distance between silanol groups on the curved pore surfaces. The mechanical properties and dielectric constant of these films were comparable to reference materials prepared using more sophisticated porogens reported in the literature.

Topics
  • pore
  • surface
  • dielectric constant
  • Silicon
  • porosimetry