People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hess, Wayne P.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2013Photoemission Electron Microscopy of a Plasmonic Silver Nanoparticle Trimercitations
- 2013Silver nanorod arrays for photocathode applicationscitations
- 2013Plasmon-Induced Optical Field Enhancement studied by Correlated Scanning and Photoemission Electron Microscopycitations
- 2012Near-field focused photoemission from polystyrene microspheres studied with photoemission electron microscopycitations
- 2011Plasmonic enhancement of thin-film solar cells using gold-black coatingscitations
- 2011Plasmonic Field Enhancement of Individual Nanoparticles by Correlated Scanning and Photoemission Electron Microscopycitations
- 2010Effect of Surface Charge on Laser-induced Neutral Atom Desorptioncitations
- 2007An In Situ Study of the Martensitic Transformation in Shape Memory Alloys Using Photoemission Electron Microscopycitations
- 2007Study of Martensitic Phase transformation in a NiTiCu Thin Film Shape Memory Alloy Using Photoelectron Emission Microscopycitations
- 2007Real Time Study of Cu Diffusion Through a Ru Thin Film by Photoemission Electron Microscopy (PEEM)
- 2007Study of Copper Diffusion Through Ruthenium Thin Film by Photoemission Electron Microscopycitations
- 2007Photoemission Electron Microscopy of TiO2 Anatase Films Embedded with Rutile Nanocrystalscitations
- 2006In Situ Photoelectron Emission Microscopy of a Thermally Induced Martensitic Transformation in a CuZnAI Shape Memory Alloycitations
- 2006Laser-Induced Oxygen Vacancy Formation and Diffusion on TiO2(110) Surfaces Probed by Photoemission Electron Microscopycitations
- 2005Surface Electronic Properties and Site-Specific Laser Desorption Processes of Highly Structured Nanoporous MgO Thin Filmscitations
- 2002"EXAFS Study of Rare-Earth Element Coordination in Calcite"citations
Places of action
Organizations | Location | People |
---|
article
Study of Martensitic Phase transformation in a NiTiCu Thin Film Shape Memory Alloy Using Photoelectron Emission Microscopy
Abstract
The thermally-induced martensitic phase transformation in a polycrystalline NiTiCu thin film shape memory alloy was probed by photoelectron emission microscopy (PEEM). In situ PEEM images reveal distinct changes in microstructure and photoemission intensity at the phase transition temperatures. In particular, images of the low temperature, martensite phase are brighter than that of the high temperature, austenite phase, due to the relatively lower work function of the martensite. Ultra-violet photoelectron spectroscopy shows that the effective work function changes by about 0.16 eV during thermal cycling. In situ PEEM images also show that the network of trenches observed on the room temperature film disappear suddenly during heating and reappear suddenly during subsequent cooling. These trenches are also characterized by atomic force microscopy at selected temperatures. We describe implications of these observations with respect to the spatial distribution of phases during thermal cycling in this thin film shape memory alloy.