People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cai, Mingdong
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2007An In Situ Study of the Martensitic Transformation in Shape Memory Alloys Using Photoemission Electron Microscopycitations
- 2007Study of Martensitic Phase transformation in a NiTiCu Thin Film Shape Memory Alloy Using Photoelectron Emission Microscopycitations
- 2006In Situ Photoelectron Emission Microscopy of a Thermally Induced Martensitic Transformation in a CuZnAI Shape Memory Alloycitations
Places of action
Organizations | Location | People |
---|
article
Study of Martensitic Phase transformation in a NiTiCu Thin Film Shape Memory Alloy Using Photoelectron Emission Microscopy
Abstract
The thermally-induced martensitic phase transformation in a polycrystalline NiTiCu thin film shape memory alloy was probed by photoelectron emission microscopy (PEEM). In situ PEEM images reveal distinct changes in microstructure and photoemission intensity at the phase transition temperatures. In particular, images of the low temperature, martensite phase are brighter than that of the high temperature, austenite phase, due to the relatively lower work function of the martensite. Ultra-violet photoelectron spectroscopy shows that the effective work function changes by about 0.16 eV during thermal cycling. In situ PEEM images also show that the network of trenches observed on the room temperature film disappear suddenly during heating and reappear suddenly during subsequent cooling. These trenches are also characterized by atomic force microscopy at selected temperatures. We describe implications of these observations with respect to the spatial distribution of phases during thermal cycling in this thin film shape memory alloy.