People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ali, Wahaaj
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Cytocompatibility, cell‐material interaction, and osteogenic differentiation of MC3T3‐E1 pre‐osteoblasts in contact with engineered Mg/PLA compositescitations
- 2024Bioabsorbable Composite Laminates of Poly‐Lactic Acid Reinforced with Surface‐Modified Mg Wires for Orthopedic Implant Applicationscitations
- 2024A phase-field model of mechanically-assisted corrosion of bioabsorbable metals
- 2023Bioabsorbable WE43 Mg alloy wires modified by continuous plasma-electrolytic oxidation for implant applications. Part I: Processing, microstructure and mechanical propertiescitations
- 2023Bioabsorbable WE43 Mg alloy wires modified by continuous plasma electrolytic oxidation for implant applications. Part II: Degradation and biological performancecitations
- 2023Effect of surface modification on interfacial behavior in bioabsorbable magnesium wire reinforced poly-lactic acid polymer compositescitations
Places of action
Organizations | Location | People |
---|
article
Bioabsorbable Composite Laminates of Poly‐Lactic Acid Reinforced with Surface‐Modified Mg Wires for Orthopedic Implant Applications
Abstract
<jats:p>Unidirectional and multidirectional laminates of Mg‐wire‐reinforced poly‐lactic‐acid–matrix composites are manufactured by an improved compression molding strategy that allows excellent control on the position and orientation of the wires. Two different types of Mg wires, with and without surface modification by continuous plasma electrolytic oxidation, are used, the former to improve the interfacial strength and to reduce the degradation rate of Mg wires in biological environments. The mechanical properties of the constituents as well as of composites are measured before and after in vitro degradation by immersion in simulated body fluids and the corresponding deformation, fracture, and degradation mechanisms are analyzed in detail. It is found that the presence of the Mg wires improves the mechanical behavior in tension and compression of unidirectional composites in the longitudinal direction (close to cortical bone) and that quasi‐isotropic laminates with tailored properties can be designed from the data of unidirectional composites.</jats:p>